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ABSTRACT

With the rise of intelligent computing applications such as artificial intelligence and big data
analytics, the quality of data sources has become crucia for accurate decision-making. This is
primarily because data collected from various sources needs to be organized and processed to
extract information for analysis and subsegquent decision-making. With advancements in
communication technology and the growth of maritime transportation, the Automatic Identification
System (AlS) has become a fundamental communication device for maritime vessel navigation.
Due to the extensive range of data provided by the AIS and its diverse functional requirements,
there may be instances of incomplete or duplicated data packets during the transmission process to
shore-based stations, caused by signal interference or poor reception. This study, with the assistance
of the National Academy of Marine Research (2024) which provided AlS data sources, focuses on
establishing a data management mechanism for the AIS database. Additionally, it involves the
development of AIS data processing algorithms for tasks such as data format parsing, field
interpretation, and cleaning. The aim of the study is to establish an operational and standardized
AIS data quality control mechanism that effectively identifies and eliminates abnormal or
inconsistent AIS data within the system. By doing so, the study seeks to maintain the data stability
and reliability of the AlS database while providing high-quality AlS data.
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@ INTRODUCTION

Surrounded by the sea, Taiwan is located in the eastern part of Asia, where East Asia and South Asia
converge, and occupies a central position in the East Asian archipelago. Therefore, the maritime transportation
in its surrounding areas is highly developed. To the west, across the Taiwan Strait, lies China. To the south,
through the Bashi Strait, one can reach countries such as the Philippines, Vietnam, Singapore, and Malaysia.
To the north, through the East China Sea and the South China Sea, one can reach countries like Japan and South
Korea. Talwan's exceptional geographical location has made it a crucial transportation hub in Asia and the
Western Pacific. It plays a significant role in various aspects, including the economy and transportation within
the Asian region. The waters near Taiwan are characterized by ahigh number of vessels, bustling maritime trade
activities, and frequent fishing operations. With limited navigational space in the surrounding seas of Taiwan,
the increasing variety of vessels poses a significant risk of accidents during navigation.

Asmaritime safety concerns have gained significant attention from countries worldwide, the International
Maritime Organization (IMO) hasissued the "International Convention for the Safety of Life at Sea (SOLAS)"
(RECOMMENDATION ITU-R M.2092-1, 2022), which mandates the installation of the Automatic
Identification System (AIS) on all passenger and cargo ships with a gross tonnage of 300 tons or above for
international voyages, as well as cargo ships not engaged in international voyages with a gross tonnage of 500
tons or above. While navigational instruments and equipment such as radar charts and Automatic Radar Plotting
Aids (ARPA) have the capability to identify vessels at sea, their primary purpose is to provide relevant
navigational information during ship operations. However, they are unable to acquire and relay other dynamic
vessel information such aslongitude, |atitude, heading, and speed of neighboring vessels. Thislimitation hinders
effective measures to avoid and mitigate potential maritime accidents, including collisions that can lead to
capsizing and grounding. In response to the increasing volume of various types of vessels entering and leaving
ports (Nieh, et a., 2019) and to ensure safe navigation in the waters surrounding Taiwan, the Maritime and Port
Bureau, Ministry of Transportation and Communications (MOTC) revised the " Ship Equipment Regulations®
(Huang et al., 2019) in 2008 based on the International Convention for the Safety of Life at Sea. According to
these regulations, all types of vessels with a gross tonnage of 20 tons or above are required to be equipped with
the AIS, and nationwide Al S-related hardware facilities have been established. These measures aim to ensure
the safety of vessel navigation and acquire precise dynamic data such as ship speed and heading.

In the research project titled " Application of Ship Monitoring and Early Warning System" published by Su
and Xu from the Harbor and Marine Technology Center in 2021, the authors discussed how to utilize historical
dynamic data from ships AlS to analyze vessdl trgjectories in the waters surrounding Taiwan and compile
statistics on various types of vessels entering and leaving major commercial ports. The purpose of this study is
to provide a basis for maritime traffic management by the competent authorities and reduce the probability of
ship collisions at sea. Therefore, the accuracy and correctness of AlS data significantly impact the accuracy of
theanalysis. Inthe 2020 paper "Analysis of Ship AIS Applicationsin the Waters and Ports Surrounding Taiwan"
by Huang and Chen et al., several issues regarding the current operation of the AlSwereidentified. Specifically,
the paper highlights instances of missing or incorrect parameters in the AlS data fields of terrestrial AlS base
stations receiving data from ships. To address this concern, we utilize AlS receiving stationsto collect ship AIS
data and verify whether the received data exhibits issues such as missing or incorrect parameters in the
aforementioned AlS data fields. Examination of the system database interface for AlS data decoding, depicted
in Figure 1, reveals that certain parameters in the Al S data indeed exhibit abnormal conditions.
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Figure 1. AlSdatafield erroneous parameter illustration.

Therefore, for this study, the AIS data provided by the National Academy of Marine Research (2024) was
used to analyze the decoded AlS data for both dynamic and static information. In the first phase, based on the
international standards set forthin the I TU M.1371-5 protocol for AlS datafield parameters, non-compliant and
duplicate AlS data was removed. Thisincluded parameters such as MM S, latitude and longitude, ship speed,
ship heading, and bow direction. In the second phase, we used MATLAB to analyze the dynamic information
of AIS data. Ship speed, heading, bow direction, latitude and longitude, and other dynamic data points were
graphically represented. By analyzing a large amount of data, different ship behavior characteristics under
various navigation states (e.g., underway, at anchor, berthed) could be understood. Ship behavior feature data
was graphically represented to identify ship behavior patterns and determineif they conformed to the continuous
changes in AIS dynamic data, including the influence of speed changes on navigation distance, the effect of
heading on latitude and longitude, and the relationship between heading and bow position. Data algorithms
were used to calculate AlS data that exhibited abnormal ship behavior patterns and to subsequently exclude
them. In the third phase, AIS data of good quality, processed and analyzed through data algorithms, was
systematically stored in a database. Subsequently, this data can be displayed on the developed interface of the
dynamic ship information system.

The remainder of this study is organized as follows: Section Il provides an overview of the key
technologies used in this study, including AlS, APIs, data transmission, and MATLAB. It aso highlights the
current application of AIS technology in Taiwan for various maritime purposes. The primary objective of
Section I11 isto explain the methods used to ensure the accuracy and reliability of the Al'S data used in the study
by removing erroneous or inconsistent data formats. By organizing the AlS dataaccording to the defined criteria,
the study could proceed with reliable and consistent datafor further analysis and interpretation. Section IV aims
to provide a streamlined and efficient process for handling AIS data, ensuring the accuracy of the data and
facilitating its utilization for further analysis and decision-making purposes. The outcomes, emphasizing the
significance of the study contributions and suggesting directions for future studies to advance the field of AIS
data analysis and its practical applicationsin maritime operations and safety are summarized in Section V.
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9 AUTOMATICIDENTIFICATION SYSTEM

In order to strengthen maritime vessel management, navigation safety, enforcement of maritime
regulations, and rapid response to maritime incidents, relevant maritime safety agencies have established ship
monitoring systems. The Automatic | dentification System (AlS) playsacrucia rolein monitoring the dynamic
movements of vessels, enabling the tracking of distressed vessels and improving rescue efficiency. This system
exchanges el ectronic datawith neighboring vessels, Al S shore stations, and satellites, allowing AlSinformation
to be integrated into maritime radar systems. By prioritizing collision avoidance, the system helps prevent
accidents in maritime traffic. Additionally, it can broadcast weather information and danger warning zones to
vessels, thereby enhancing navigational safety. Huang et a ., (2019) discussed the use of AlS receiving stations
established by the Harbor and Marine Technology Center. These stations collect AlS data and utilize ship
dynamic information as the basis for analysis and applications. This allows for a clearer understanding of the
fluctuation of ship traffic in major portsin Taiwan and its surrounding waters, providing valuable insights for
ship channel planning and policy implementation. By the end of 2017, AlS base stations in Taiwan had been
installed in various locations, including Keelung Port, Taipel Port, Miaoli Waipu Fishing Port, Taichung Port,
Changhua Wangong Fishing Port, Budai Port, Tainan Anping Port, Kaohsiung Port, Hualien Port, Pingtung
(Donggang, Cat Nose, Xuhai), Taitung (Fu'ao, Changbin), Yilan (Su'ao Port, Toucheng), and New Taipei
(Ruifang, Shimen), totaling 18 locations in Taiwan proper, and including outlying islands such as Penghu
(Magong Port, Jibel Island), Orchid Island Kaiyuan Port, Kinmen (Shuitou Port, Wugjiu), and Matsu (Beigan,
Dongyin, Dongju, Fuao Port), totaling 9 locations. In total, 27 AlS receiving stations were established (Liu et
al., 2019). The Al Sdata collected from these stationsis utilized to construct areal-time ship information system
for the waters surrounding Taiwan. This system offers publicly available information on ship navigation,
including vessel types, Maritime Mobile Service Identities (MMSI), speed, heading, latitude and longitude,
destination ports, and departure locations, which encompasses both dynamic and static ship information, as
depicted in Figure 2.
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Figure 2. Thereal-time ship information system. (Marine Traffic, 2024)

82

Marine Research of the National Academy of Marine Research
DOI: 10.29677/MR.202406_4(1).0006



Automatic Identification System Data Fusion

Lol lals)

In cooperation with the MOTC to promote the Smart Navigation and Safety Service Development Plan,
since 2018, the Maritime and Port Bureau has been leading the integration of AlS. Based on the national
lighthouse locations, 19 beacon stations and 14 base stations have been established. These stations provide
services such as electronic navigation, early warning, and monitoring to enhance vessel navigation safety,
reduce maritime incidents, strengthen maritime rescue operations, monitor traffic flow in Taiwanese waters,
and continuously assess navigation risks for the planning and adjustment of beacon and navigational systems.
Additionally, the system has integrated the existing 16 AlS receiving stations to serve as signal reinforcement
and backup.

The AlS operatesin three modes (Wijayaand Zhang, 2013; Pereraet al., 2015; Wei et a., 2020). Thefirst
mode is automatic continuous transmission of vessel information to external entities. The second mode involves
vessels providing monitoring capabilities to the competent authorities within their jurisdiction. The third mode
involves mutual data exchange and response between vessels and the competent authorities. The purposes of
the AlSareto provide vessel identification, aid in tracking vessel targets, simplify vessel information exchange,
and prevent vessel collisions. AIS messages provide two types of data: static information and dynamic
information (Goerlandt and Kujala, 2014; Xiao et al., 2015; Xin et a., 2019). Static information includes vessel
details such as vessel name, IMO number, MMSI, vessel type, length, width, and more. Dynamic information
includes data like longitude, latitude, heading, speed, and other relevant parameters. The AlS enables accurate
and timely reporting of vessel information. AlS electronic signals are transmitted through the air to shore-based
receiving stations. These signals are then transferred to the processing center viaawired network for decoding
and computation (Dogancay et al., 2021; Qu et a., 2019; Zaman et a., 2015). The processing center utilizesthe
AlS messages to build a database, which incorporates static and dynamic vessel data, weather data, electronic
charts, and other relevant information (Rawson & Brito, 2021). This database is analyzed and processed to
provide the latest information services to various government and search and rescue agencies (Mao et d ., 2018;
Rong et a., 2015; Wang et al., 2013). As mentioned in the preceding section regarding the current devel opment
of AIS technology and the goals of this study, our focus is on establishing a quality management mechanism
for the Al Sdatabase. Theaimisto establish an operational and standardized Al S dataquality control mechanism
that effectively identifiesand eliminates abnormal or inconsistent AlS datawithin the system. Inrelated research
on AlS data cleaning and management, a spatial clustering method (SPTCLUST-II) is introduced. This study
clusters a substantial amount of ship trajectory datain a short time by extracting historical datafrom ship AlS,
enabling an understanding of maritime vessel navigation behavior. This, in turn, may contribute significantly to
the benefits of ship traffic management in intelligent transportation systems. The study also outlines a method
for clustering vessel trajectory segments and extracting maritime traffic routes, comprising four main parts. The
first part involves the collection and cleaning of AlS data. Initially, the study includes the removal of duplicate
data in the collected raw AlS data. Through the use of GIS applications, the original AlS data was verified,
encompassing checking its spatial distribution, comparing data discrepancies within the same vessel AlS entry,
and removing observations outside the target area and land-based observations.

According to the ITU-R M.1371-5 recommendation (Murray and Perera, 2021), there are 27 defined data
types for AlS data, and each data type has its own defined data field format. This study utilizes various AIS
static and dynamic data, along with their definitions and data formats, as shown in Table 1 below:
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Table 1. Al S Data types, definitions, and formats. (Zhang et al., 2021)

Data Type Definition Data Field Format
Type 1 Position Report Class A Format A
Type 2 Position Report Class A (Assigned) Format A
Type 3 Position Report Class A (Response) Format A
Type 4 Base Station Report Format B
Type 5 Static and Voyage-related Data Format B
Type 6 Binary Addressed Message Format B
Type 7 Binary Acknowledge Format B
Type 8 Binary Broadcast Message Format B
Type 9 Standard SAR Aircraft Position Report Format C

Type 10 UTC/Date Inquiry Format D
Type 11 UTC/Date Response Format D
Type 12 Addressed Safety-Related Message Format E
Type 13 Safety-Related Acknowledge Format E
Type 14 Safety-Related Broadcast Message Format E
Type 15 Interrogation Format F
Type 16 Assignment Mode Command Format F
Type 17 DGNSS Broadcast Binary Message Format G
Type 18 Standard Class B CS Position Report Format H
Type 19 Extended Class B Equipment Position Report Format H
Type 20 Data Link Management Format I
Type 21 Aid-to-Navigation Report Format J
Type 22 Channel Management Format K
Type 23 Group Assignment Command Format L
Type 24 Static Data Report Format M
Type 25 Single Slot Binary Message Format H or I
Type 26 Multiple Slot Binary Message Format H or I
Type 27 Long Range AIS Broadcast Message Format H or [

Note: The data field formats mentioned above (A, B, C, D, E, F, G, H, I, J, K, L, M) refer to the specific formatting
structures defined in the ITU-R M.1371-5 recommendation.
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e AISDATA CLEANING AND DATA ORGANIZATION OF
ERRONEOUS FORMATS

Al S data cleaning and data organi zation involve the process of removing erroneous formats and organizing
AlS datato ensure accuracy and consistency. This process can be divided into two main steps: datafiltering and
handling of erroneous formats. During the datafiltering stage, AlS data that meets specific criteria or standards
is selected. This may include removing data with empty or default MM SI values, eliminating duplicate data,
and discarding data that does not comply with the defined international standards for AlS data as specified in
ITU-R M.1371-5 recommendations. In the handling of erroneous formats stage, the focusis on addressing AIS
data that does not adhere to the correct format. This could involve handling data with missing essential data
fields or erroneous data field formats (Bengio et al., 2014; Karatas et al., 2021). Erroneous format data can be
corrected or excluded to ensure the integrity and consistency of the dataset. By implementing AlS data cleaning
and data organization of erroneous formats, a dataset that conforms to the standards and contains accurate
information can be obtained (Daranda 2016; Eljabu et al., 2022; Nguyen et al., 2018). This provides areliable
foundation for subseguent analysis and applications.

The AIS data used in this study was provided by the National Academy of Marine Research (2024).
Through research, it has been discovered that certain AlS data parameters do not comply with international
standard specifications. Additionally, some dynamic and static information contains default or empty values.
Moreover, dueto the multiple reception and decoding of AlS signals by multiple shore-based receiving stations,
the same AIS data is stored repeatedly. These errors in AlS data can negatively affect data accuracy, while
duplicate AlS data can increase the burden on the database. Therefore, this study first focused on the preliminary
exclusion of erroneous format data and the removal of duplicate AlS data from the original AlS data received
from the NAMR. This process aimed to provide accurate AlS data for subsequent parameter analysis. The
flowchart of the preliminary AlS data organization process is shown in Figure 3.
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Figure 3. Al Spreliminary data collation flowchart.
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3.1 AlSdata access

The data provided by the NAMR was accessed through an HTTP AP, and the data format was JSON, as
shown in Figure 4. In this study, aweb crawler was used to scrape the data from the HTML API webpage. The
entire JSON data on the webpage was copied and converted into a data file format that could be read by the
database (such as TXT, Excel, CSV, etc.). The data from the file was imported into the designated database
location, table, columns, and data types as specified.
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Figure 4. AlSdata formats.
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An application programming interface (API) alows for the analysis and processing of input data and its
presentation or storage in a designated interface or environment. By utilizing an API, communication between
different hardware devices, computer software, and platform facilities can be achieved. An APl serves as a
bridging interface between different environments, significantly reducing the complexity and cost of data
transmission and computation. With the increasing scale and variety of software and hardware in recent years,
communication between different complex systems has become crucial. APIs enable the proper division of
responsibilities among software systems in different environments. Well-designed APIs can reduce
interdependencies between systems, thereby enhancing system maintainability and scalability, as shown in
Figure 5.

Java API t

Hardware device

%\ SQL API = Web API D S0
ey T et -
!In y Front-end interface and User
Engineer Sever

HTTP API
>
&

Environmental system
Figure5. API interface architecture.

In this study, the powerful datainteroperability of APIswasleveraged between different software applica-
tions. AIS data was transmitted in different data formats among compiled programs, front-end webpages,
mobile devices, and backend databases, while preserving the integrity of the original data. APIsare categorized
into five main types. This study utilized protocol-based APIs, device APIs, and web APIs to achieve high
compatibility across different operating environments. The dataformat isan important component of APIs, and
the designers of these interfaces have the freedom to determine the format and specifications of the data to be
returned. As for an HTTP AP, it serves as the communication medium for data transmission between the
database server and the user interface. HTTP utilizes the HTML structure as the original format for data
exchange between web servers and computer system browsers. Nowadays, users can access the internet on
various devices such as computers, smartphones, and wearable devices. The availability of different devices
allows for diverse approaches to data processing. When using an HTTP API or web API to transmit data, there
are commonly two response formats. In this study, the JSON format was used as the primary format for
transmitting A1S data.
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3.2 Duplicated data deletion

Taking the example of accessing AlS datafrom the NAMR, as shown in Figure 6, the left half of the image
shows AlS datafor avessel with MM S| 412508457. At the timestamps of 13:58:15 and 13:40:15, there are 11
and 6 data entries, respectively. The values for ship speed (SOG), course over ground (COG), longitude, and
latitude areidentical for these entries. In theright half of theimage, AlS datafor avessel with MM S| 412950009
is displayed. There are 3 and 9 data entries highlighted with red and blue boxes, respectively. The values for
ship speed (SOG), course over ground (COG), longitude, and latitude are the same for these entries, with only
the timestamp (Record_Time) being different. The data marked with arrows has the same timestamp
(Record_Time) asthe AIS datain the blue box, while the other values differ. These data entries are considered

abnormal data.

MME1 ROT 300 Longimde Latimde  COO  Troe Hesding Recond Time

412508457 128 02 LIB76635 2453 2993 5l 2022-05-16 1356:15000]  MMS1 ROT 300 L Lastule  COJ  Trw He Recond_Time
412506457 128 02  LIB766345 24745233 2993 511 W02205-16 135615000 | 412950009 128 08 120159893 HIMTL 196 Sl 2021-11-06 001046 000
412508457 128 02  LIGTE6M5 43233 2993 5l 2022-05-16 135615000 | 412950009 126 08 120159693 2623372 176 51l 2021-11-06 D010.46 000
412508457 128 02  LIST66M5 20745233 2003 S WO516 135815000 | 412950009 128 0B 120189693 6LIMTT I 501 2021-11-06 001046 000
412508457 126 02 118766345 24745233 2993 Sl 220516 135815000 | 412950008 128 08 12005603 MMM 165U 2021-11-06 00.10.46. 000
412508457 126 02 116766345 2445133 2903 51 WI05-16 135615000 412950009 128 12 12008094 26233512 1M 511 m:-noem:u.n.oco-
412508457 128 02 11876635 M52 203 51 0516 135615000 [412950008 128 0B 120159093 B23MT 1w S 2021-11-06 00:10:47.000
412508457 128 02 11876635 M52 2993 S5l 20516 135815000 | 412950008 128 OB 120059893 IIMIT 176 S 2021-11-06 00:10:47.000
412508457 126 02 11876635 MSZE 2903 Sl 2022-05-16 1358:15000| | 412050008 128 08 120059893 6IIMM 176 511 021-11-06 001047 000
412508457 1286 02 118766345 20745233 2993 511 20720516 135615000 | 412050000 128 08 120159893 623U 1MW 501 2021-11-06 00:10:47 000
417508457 12802 118766345 24745233 1993 511 207205-16 1358:15000| | 412050000 128 08 120159893 LMW 1M SN 2001-11-06 001047 000
417508457 128 0 11766382 24745142 3011 511 WII05-16 134015000 | | 412050000 128 08 12005603 HBUT 1M 5N 202111106 001047 000
412508457 1% 0 118766382 24745142 3011 511 SII05-16 134015000 412050009 128 08 120159893 2623472 176 511 2021-11-06 00-10:47 00O
412508457 1286 0 118766362 2445142 3001 511 202005-16 13:4015000| | 412050008 128 08 120159863 63T 176 511 20211106 00-10.-47.000
412508457 128 0 118766382 24745142 3011 511 202205161 3:40:15.000

417508457 128 © 118766362 TAMS142 3OL1 510 516 134015000

| 412508457 1260 LIB 76363 24745142 011 511 2002-05-16 134015000

Figure 6. Duplicated Al S data.

After removing duplicate entries for the vessel with MMSI 412508457, only 2 data entries with the
timestamps of 13:58:15 and 13:40:15 remained. For the vessel with MM S| 412950009, only 2 data entries with
the timestamps of 0:10:46 and 0:10:47 were retained, as shown in Figure 7.

MMSI ROT S0G Longitude  Latitode COG  True Hesding Record_Time
412508457 128 02 118766345 24.745233 2993 511 2022-05-16 13:58:15.000
412508457 128 0 118766382 24.745142 3011 511 2022-05-16 13:40:15.000

MMSI ROT 50G Longitude  Latitude COG  True Heeding Record Time
412950009 128 08 120159893 26233472 176 511 2021-11-06 00:10:46.000
41205000 128 08 120159893 2623472 17 5l 2021-11-06 00:10:47 000

Figure 7. None duplicate Al S data.

3.3 Erroneousformat data cancelation

Some of the AIS dynamic data fields, including SOG, COG, true heading, ship rate of turn (ROT), latitude,
and longitude, contained default values or were empty, including AlS data with ship speed (SOG) equal to 102.3
knots, ground heading (COG) equal to 360 degrees, true heading (True Heading) equal to 511 degrees, ship rate
of turn (ROT) equal to £128°/min, longitude (Longitude) equa to 181, and latitude (Latitude) equa to 91. Since
the content of these data entries could not be determined as erroneous, this study deleted the aforementioned
data. The AIS data used in this study is the raw data provided by the NAMR, which contains many erroneous
format entries. These erroneous format AlS data entries can impact subsequent data analysis. For this study,
data entries with MM S| codes less than 9 digits or greater than 10 digits, ship speeds (SOG) exceeding 70 knots,
ship headings (COG) greater than 360 degrees or less than O degrees, true headings exceeding 360 degrees or
less than O degrees, longitudes exceeding 180 degrees or less than -180 degrees, and latitudes exceeding 90
degrees or less than -90 degrees were deleted.
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Q AISDATA AUTOMATIC CALCULATIONS
AND DEBUGGING

After the initial sorting process to eliminate AlS data that did not comply with international standards,
duplicate data, and dynamic data with default values or empty fields, there may still be errorsin the remaining
AlSdata. It isnot possible to determine the accuracy of individual AlS data entries based on their values alone.
Therefore, the ship's heading, speed, and distance traveled based on two consecutive AlS data entries for each
vessel were calculated for this study. The calculated values were compared and analyzed against the actual AIS
data values, and any abnormal AlS data was removed. The cleaned AlS data was imported into the database,
effectively reducing the system and database load by removing vessel data with unclear behavior trajectories.

4.1 Al S parameters calculation

In this study, the AlS data was classified based on the same MMSI. AlS data with the sasme MM S| was
grouped into the same category, and then further divided into two categories based on the ship's speed (SOG):
stationary vessel data and moving vessel data. To avoid misidentifying vessels that were undergoing
deceleration or acceleration as stationary vessels, a condition had to be met. The difference in ship's speed
(SOG1-SOGy) hetween two consecutive AlS data entries (D1 and D>) had to be 0 to be classified as stationary
vessel data. If the difference in ship's speed (SOG:1-SOGy) between D1 and D2 was not O, then the ship's speed
(SOGay2) of D1 and D2 wasindividually evaluated. If the ship's speed (SOGay) isO, it was classified as stationary
vessel data. Otherwise, it was classified as moving vessel data. The relevant process flowchart is shown in

Figure 8.
AIS data

AIS data
Classified by MMSI

l

Take thie new and old two sarne MMSI AIS data |
in continuous time

l

D D, static
yes ahes hi
S0G -S0G,=0 T G SR
information

lno —

4

Judge the status of
DLDE

l

no ves
S0G, ,=0

R
{ Movement state J
ship data

End

Figure 8. Al Sdata classification flowchart.
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4.2 Calculation and deletion of the latitude and longitude of shipsin abnormal static
state

To determineif the stationary position of the same vessel was abnormal, we selected the current AlS data
and the previously received AlS data, defining them as D1 and Do, respectively. The great circle distance,
denoted as d, between D1 and D, was then calculated. The purpose was to assess whether the linear distance
changein latitude and longitude between D1 and D2 was hormal for a stationary vessel without any acceleration.
Upon examination, it was observed that the GPS devices used in AlS data may have introduced fluctuationsin
the fourth decimal place of longitude and latitude readings, even when there was no actual change in position.
These fluctuations were considered as positioning errors. Considering that the length of the fourth decimal place
in longitude and latitude is approximately 10 meters of great circle distance, and based on the international
standard specified in ITU-R M.1371-5, the positioning accuracy error of GPS devices should not exceed 10
meters. Therefore, if the great circle distance d between D1 and D, exceeded 10 meters, it was classified as
abnormal data. The process for determining abnormal ship latitude and longitude positionsisillustrated in the
right flowchart of Figure 9. Since the Earth is a sphere, the calculation of latitude and longitude requires
considering the curvature of the sphere. The Haversine formula was used in this study to calculate the great
circledistance (1). A1, 41, 42, and ¢z represent the longitude and latitude of two points, and sav(6) representsthe
half of the chord length between two points on the surface of the sphere for the central angle 6. The great circle
distance d is measured in kilometers, and r is the average radius of the Earth, which is approximately 6,371
kilometers.

hav(8) = hav(g, — ¢1) + (1 — hav(p, — ¢,) — hav(gp, + ¢,)) * hav(d, — A1)

d = 2r arcsin (,/hav(é) ) = 2r arcsin (\/sinz (@) + cos¢, * cosp, * sin? (AZ;—M) ) (1)

[ Stationary ship data J

v

[ Take two consecutive AIS data entries ]

for the same ship D, and D,

[ |

Calculate the real heading Calculate the great circle distance d
difference Dy between D, and D, between D, and D,

NO NO

d> 10 meter

YES

—— Delete D, |~

Reserve D,

Figure 9. The processfor determining abnormal latitude and longitude positions:along with:abnormal
heading.
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00000

Based on the AIS data from the NAMR, for the vessel with MM S| 440687000, all of its AlS entries had a
ship speed (SOG) value of O, indicating a stationary state. In Figure 10, thisvessel was classified as a stationary
vessel. However, when examining the great circle distance between this AlS entry (marked in the red box) and
the consecutive AIS entry, it exceeded the average great circle distance for the vessel's stationary period as
shown in the red box in Figure 11. Therefore, this AlS entry was considered abnormal and should be del eted.
The abnormal location of this vessel isindicated by the red box in Figure 12, while the vessel's actual berth is
represented by the yellow box. The distance between these two locations is approximately 611.883 meters
according to the great circle distance calculation.

MMSI SOG Longitde Letitde  Record_Time

40687000 O 119263217 254267  2022-05-2901.48:00.000
440687000 O 1192632 25426683 2022-05-2902:1000.000
440687000 O 119263217 25426683 2022-05-2903.11.00.000
440687000 0 1192632 2542675  2022-05-29.03:4900.000
440687000 0 119263217 25426717 2022-05-2904:4200.000
40687000 0 119263217 25426717 2022-05-2904:57:00.000
(440687000 0 119264235 2543212 2022-05-29051300.000 |
440687000 0 119263217 254267  2022-05-2905:1400.000
440687000 0 119263233 25426667 2022-05-2005:1500000

Figure 10. Ship information with MM S| of 440687000.
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Figure1l. MM S| 440687000 mean great circle distance during ship stay.
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Figure 12. MM SI 440687000 unusual position of ship.

4.3 Calculation and deletion of ship course data in abnormal static state

In AlS data, there are two types of heading information: course over ground (COG) and true heading. True
heading is defined as the direction of the vessel's bow, represented by the red arrow in Figure 13, while COG
represents the vessel's direction of travel, indicated by the yellow dashed line in Figure 13. During vessel
navigation at sea, the vessel's heading should align with its bow direction. However, when the vessel isturning,
theinertiaof motion causesit to continue moving inthe original direction, resulting in adrift. Thiscan introduce
discrepancies between the COG and true heading. If the difference between these two values exceeded 45
degrees, the AlS data entry was considered abnormal.

During periods when the vessel is berthed or anchored, the vessel's position remains rel atively unchanged.
However, due to GPS positioning errors, there may be slight positional fluctuations within aradius of 0 to 10
meters around the vessel's location, as shown in Figure 14. These positioning errors can mistakenly indicate
vessel displacement and introduce inaccuracies in the parameters, including COG. Therefore, when the vessel
isin astationary state, COG is not considered in the anomaly detection criteria.

= B =lE
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Figure 13. Schematic diagram of true heading and heading over ground.
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Figure 14. Schematic diagram of abnormal course over ground.

To assess whether there were anomalies in the heading data of avessel in a stationary state, we started by
obtaining two consecutive AlS data entries, D1 and Dy, for the same vessel. Subsequently, we calculated the
difference in true heading (D) between D1 and D2 to evaluate whether the true heading data was normal for a
vessel without a significant rate of turn. The purpose of considering the true heading difference was to account
for potential errorsin sensor measurements. If the difference in vessel heading exceeded 45 degrees, indicating
asignificant change in the vessel's bow direction, the AlS data entry was classified as abnormal. The abnormal
judgment process for ship's course dataisillustrated in the left flowchart of Figure 9.

Based onthe AlS datafrom the NAMR, the Al S dataentriesfor the vessel with MM S| 413212680 indicate
that the vessel was in a stationary state, as the vessel's speed over ground (SOG) was consistently 0, as shown
in Figure 15. However, upon examining the true heading values for this vessel, there was a significant and rapid
change within aminute, as shown in the highlighted region in Figure 16. The true heading difference exceeded
the threshold of 45 degrees, indicating an abnormal change in the vessel's heading. Therefore, this AlS data
entry was classified as abnormal and was removed from the dataset.

MMSI 500 Tree Healing Reconl_Time

417212680 0 B3 2020-05-01 02:59:31 000
MmBE0 0 83 2020-05-01 03:00.:52.000
MI2680 0 B4 2000-05-01 03:01:50.000
(41321280 0 83 2020-05-01 03:1152.000 |
AW 0 8 2020-05-01 03:12:39.000
41312680 0 85 2020-05-01 03:15:22.000
413212680 0 Bo 020-05-01 03:16:53.000
N:22W0 0 B 2020-05-01 03:18:42.000
ANINX0 0 U 2020-05-01 03:19:32 000
4322660 0 2020-05-01 03:20-32.000
413212680 0 B2 2020-05-01 03:21:32.000
NDAO 0 B8 2020-05-01 03:2302,000
AzHO 0 B2 2020-05-01 03:25:52.000

Figure 15. Schematic diagram of ship information with MM Sl 413212680.
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Figure 16. Schematic diagram of real heading anomalies.

4.4 Calculation and deletion of ship heading and sailing distance data in abnor mal
motion state

To extract the motion state data for vessels with the same MM SI, we can consider two consecutive AIS
data pointsD1 and D2, with atime difference of T12 = T1— T2. The vessel's speeds for these data points are SOG1
and SOG;, respectively. First, we calculated the differences between the D1 and D2's own ship's course over
ground (DCT1 and DCT>) and true heading (DT12). If the differences in course over ground or true heading
exceeded 45 degrees, the data was classified as abnormal and removed. Next, we computed the differencesin
course over ground (DCi2) and true heading (DT12) between D1 and D2, and analyzed the changes in heading
and ship's bow angle to identify any abnormal turns exceeding 45 degrees and removed those data points. After
excluding abnormal heading data, we calculated the great circle distance (di2) between D1 and D». In addition,
we determined the vessel's distance traveled based on the speed SOG; and time difference T1o, represented as
DST2 = SOG, * Tio. If di2 was greater than DST», it meant that the vessel's actual traveled distance exceeded
the maximum great circle distance achievable at the vessel's speed SOG,. This suggested that the vessel was
not maintaining a constant speed or decelerating but rather accelerating. To account for this, we calculated the
distance traveled by D, using the speed SOG; and time difference T12, represented as DST1 = SOG; * Tio.
Assuming an imaginary theoretical calculation point Dx at DST1, we added the distance from D to Dx (DST1
+ DST, = DST1). If di2 was greater than DST1o, it meant that the vessel's traveled distance, even under
acceleration, exceeded the maximum great circle distance achievable at the vessel's final speed SOG;.

AlS devices, GPS positioning errors, ocean currents, and weather conditions can cause vessel position drift
and distance measurement errors. To avoid misudgments due to these factors, we calculated the difference
between the great circle distance DST12 from D2 to Dx and the great circle distance di» between D1 and D;
(DSTyq). We calculated the time required for D1 to travel DSTq at the final speed SOG;, represented as TSTg. If
TSTqwas greater than T1o, it meant that the time required to travel that distance was much higher than the time
difference between D, and D». Consequently, such data was classified as abnormal and removed as shown in
Figure 17.
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Figure 17. Diagram of abnormal sailing distance.

In the case of the vessel with MM S| 413706040 in the AIS data from the NAMR, the vessel's course over
ground and true heading showed a difference of more than 140 degrees. Additionally, there was a clear
contradiction between the vessel's bow direction and its actual navigation direction, as shown in Figure 19.
Therefore, the AlS data highlighted in the red box in Figure 18 was classified as abnormal data.

MMZI S0G  Longitude Latitade COG  True_Heading Record_Time

413706040 94  117.629948333333 23.73778 M5 30 2020-05-01 03:13:55.000
413706040 92  117631881666667 23.7373783333333 B 7 2020-05-01 03:15:58.000
413706040 89  117634198333333 237306733333333 29 25 2020-05-01 03:16:59.000
415706040 9 117634813333333 23 7407366606667 267 26 2020-05-01 03:17:25.000
413706040 117.638451666667 237462083333333 369 34 2020-05-01 02:2000.000
415706040 4 117 64208 237517216666667 186 27 2020-05-01 03:22:37.000

[nmau 89  117.643266666667 2375392 1 167 2020-05-01 I]3:23‘3?.[l]l]]
413706040 87  117.643866666667 237550633333333 235 25 2020-05-01 02:2407.000
413706040 89 11764505 23751325 04 7 2020-05-01 03:25409.000
413706040 87  117.646063333333 23.7605433333333 174 7 2020-05-01 03:26:39.000

Figure 18. Schematic diagram of ship information with MM Sl 413706040.

Figure 19. Schematic diagram of the abnormality of the direction of the ship'sbow and the direction of
the ship's navigation.
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In the case of avessel with MM SI 413358520 in the AlS data from the NAMR, we considered the AIS
datalabeled as D, at 2020-05-01 01:22:54 and the Al S data labeled as D1 at 2020-05-01 01:23:54, as shown in
Figure 20. The great circle distance between D1 and D2 was calculated to be 825 meters. However, the
calculation of the vessel's travel radius based on D's speed was approximately 256 meters, which was
significantly less than the actual distance traveled. This indicated that the vessel was accelerating. The
calculation of the vessel'stravel radius based on D1's speed was approximately 260 meters. The addition of both
travel radii resulted in an estimated total of 518 meters, which was still 307 meters short of the D1-D> great
circledistance. According to D1's speed of 8.5 knots, it would take 1 minute and 10 secondsto travel 307 meters,
exceeding the time difference of 1 minute between D1 and D». Therefore, D1 was classified as abnormal data,
as shown in Figure 21.

MMEI S0G  Longitde Latitude COG  Troe_Hesding Record_Time
413358520 9 119.648101666667 25.319265 333 30 2020-05-01 01:03:54.000
413358520 91 119.650983333333 25.32361 s 3 20:20-05-01 01:10:54.000
413358520 86  119653636666667 1253275633333333 325 M 2020-05-01 01:12:45.000
413358520 81 119.656041666067 25.335045 1 2020-05-01 01:16:54.000
413358520 8 119.660133333333 25.3378233333333 287 31 2020-05-01 01:17:53.000
413358520 78  119.663598333333 25.3436616666667 27 31 2020-05-01 01:20:54.000
413358520 82  1190665981606667 25.34750066000067 309 35 2020-05-01 01:22:54 000
413358520 83  119667406666667 253405266666667 36 n 2020-05-D1 0127354.10- D2
D1 -[«Wm 85 11067924 253421242 0 RN 2020-05-01 01-24-34.000 )
413350520 87  119660701666667 25350666666667 19 29 2020-05-01 01:25:34.000
413358520 86  119671033333333 253555683333333 221 A 2020-05-D1 01:26:44.000
413358520 83 11967193 25357235 96 0 2020.05-01 01:27:34.000
413358520 81 119.674071666667 25.3606016666667 318 31 2020-05-01 01:29:13.000

Figure 20. Schematic diagram of ship information with MM S| 413358520.

Figure 21. Schematic diagram of the abnormal sailing distance of the ship.
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© CONCLUSIONS

This study presents the development of an operational system for data quality management in the
Automatic ldentification System (AlS). The system focuses on analyzing and debugging decoded AlS static
and dynamic data. It systematically analyzes different ship behaviors under various navigation states and infers
data and behavior patterns of ship AlS data based on these characteristics. Through the analysis of AlS data,
the system automatically identifies abnormal ship data and removes these abnormal data points. The filtered
dataisthen stored in adatabase for usein adynamic ship information system, providing real-time and historical
AlS data.

It is noteworthy that the performance and real-time nature of AlS data largely depend on the stability and
update speed provided by the data source. The AlS data used in this study was provided by the NAMR. During
the process of AIS data quality management and abnormal data identification, a considerable amount of
abnormal datawas discovered to be linked to repetitive AlS data. Thisresult isinferred to be dueto the reception
of AlS data from the same vessel by adjacent AlS base stations, resulting in a large amount of repetitive AIS
data. Incomplete codes or incorrect ship MMSI codes also account for a larger percentage of abnormal data
errors. As mentioned earlier, we have explained that the correct format for MM S| codes should be 9 digits, and
according to specifications of ITU-R M.585-8 and ITU-T E.217 recommendations, different purposes have
different MM SI assignment categories. Therefore, our assessment of abnormal data related to MMSI may be
due to AlS base stations receiving AlS data from maritime electronic buoys, handheld VHF transceivers, and
other radio beacons. The main reason is that, currently, we cannot verify whether the received AlS data is
transmitted by onboard AlS equipment. For future studies, the ability to independently receive and decode AIS
signalswould be beneficial. Thiswould significantly enhance the accuracy and breadth of ship behavior analysis
in this system, enabling more comprehensive and precise identification of abnormal AlS data.
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