Taxonomic Review of the Sea Catfish Family Ariidae in Taiwan

Chien-Hsiang Lin^{1*} Ying-Cheng Tseng^{1,2} Hsuan-Ching Ho³ Dominique P. Mediodia^{1,4,5,6} Chieh-Hsuan Lee¹ Shan-Hua Yang² Chia-Hao Chang^{7*}

 ¹ IBiodiversity Research Center, Academia Sinica, Taipei, Taiwan
 ² Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
 ³ Department and Graduate Institution of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
 ⁴ Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
 ⁵ Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
 ⁶ Institute of Marine Fisheries and Oceanology, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Philippines

⁷ Department of Science Education, National Taipei University of Education, Taipei, Taiwan

ABSTRACT

The family Ariidae comprises bottom-dwelling fishes inhabiting tropical and subtropical coasts in marine and brackish waters. Historically, ten nominal species have been recorded in Taiwanese waters. However, due to close morphological similarities among species and a lack of detailed investigation, confusion has persisted regarding the actual number of species present in Taiwan. In this study, a total of 337 specimens were newly collected, and 187 museum specimens were thoroughly examined. Based on morphological and osteological characteristics—including the patterns of tooth patches on the upper jaw, the lateral fenestra and lateral ethmoid, the supraoccipital bone, and the dorsomedial groove—all specimens were classified into three genera, each represented by a single species. In addition, 249 *COI* sequences were generated and combined with 308 public sequences for species delimitation. The results confirm the presence of three ariid species in Taiwan. *Arius* maculatus, *Netuma bilineata*, and *Plicofollis nella*.

Keywords: biodiversity, ichthyology, taxonomy, synonymy, morphology.

* Corresponding author, e-mail: chlin.otolith@gmail.com (C-HL); chiahao0928@gmail.com (C-HC) Received December 11, 2024; accepted February 17, 2025.

1 INTRODUCTION

The sea catfish family Ariidae is a group of small to moderately large fishes, primarily inhabiting marine waters, with some species extending into freshwater and brackish environments (Marceniuk et al., 2024). They are found worldwide in tropical to warm temperate regions, with approximately 157 valid species (Marceniuk et al., 2024). Acero and Betancur-R (2007) identified four anatomical synapomorphies: lapillus otoliths extraordinarily developed; bones of the otic capsules (prootic, pterotic, exoccipital, and epioccipital) profoundly inflated; the presence of a well-developed ventral process of the basioccipital; and male mouthbrooding of eggs and embryos.

In Taiwan, ariid species are typically diagnosed by the following morphological traits: a large, broad, and flat head; cylindrical trunk with a compressed tail; an upper jaw extending beyond the lower jaw; villiform tooth bands on both jaws and palatines; three pairs of barbels; two nostrils, with a small valve on the posterior nostril; and closed branchiostegal membranes on the isthmus. Additionally, these species lack body scales; possess strong, serrated spines on the dorsal and pectoral fins with venom glands; have a large adipose fin, and exhibit a deeply forked caudal fin with the upper lobe longer than the lower. Their coloration typically ranges from dark brown or blue dorsally to light gray laterally, with a pale abdomen (Chen, 1969; Chen & Yu, 1985; Shen, et al., 1993).

Ariid species in Taiwan are primarily found along the western coasts, where shallow sandy and muddy environments and large estuaries prevail. Several studies have focused on the fisheries of these species in various localities (Tzeng & Wang, 1997; Hsiao et al., 2017; Lo et al., 2017; Su et al., 2017). For instance, Lee (1992) reported that ariids constituted over 60% of the total catch in the estuary of the Tamsui River. Other research has focused on specific biological aspects of ariids, such as age and growth (Chu et al., 2011, 2012) and sound production (Lin, 2010). Despite their relatively low commercial value in Taiwan, ariids play an essential ecological role due to their abundance and dominance in these coastal environments. Notably, the critically endangered Chinese white dolphin (*Sousa chinensis*) relies on sea catfish as a significant prey item (Pan et al., 2016).

A total of ten nominal ariid species have been documented in the literature in Taiwan, including seven *Arius* species, one *Netuma*, and two *Plicofollis*. Early works by Chen (1954a, 1954b, 1969) and Shen (1984) recorded *Arius sinensis* and *Arius thalassinus* (= *Netuma thalassina*). Chen and Yu (1985) listed *Arius maculatus*, *Arius sagor* (= *Hexanematichthys sagor*), and *A. thalassinus* (= *N. thalassina*). The occurrence of *Plicofollis polystaphylodon* has also been listed in the Fish Database of Taiwan (Shao, 2024). Kailola (1999) added *Arius arenarius* and *Arius dispar*, while Shen and Wu (2011) reported *Arius arius*, *A. maculatus*, *A. thalassinus* (= *N. thalassina*), and *Plicofollis nella*. More recently, Koeda and Ho (2020) recorded *A. maculatus* and *P. nella*.

However, a long-standing taxonomic challenge remains unresolved: how many sea catfishes are present in Taiwan, and how can they be reliably and readily distinguished? Without a detailed investigation and evaluation of these names, biological and ecological studies that require precise species identification will continue to face difficulties. To address this issue, we conducted a comprehensive taxonomic review of the sea catfish family Ariidae in Taiwan. This study integrates morphological and molecular data, including examinations of fresh and museum specimens, otolith morphology, osteology, and DNA barcoding, to clarify the taxonomy of the family in Taiwan.

2 METHODS AND MATERIALS

2.1 Sampling, Preparation, and Museum Collections

A total of 337 fresh specimens were collected by local fishermen from multiple localities along the western coast of Taiwan, Penghu, and Matsu (Figure 1, Appendix 1). Of these, 159 specimens were registered in museum collections, while 178 were dissected for otolith (lapillus or utricular otolith) or skeletal (neurocranium) studies and registered under the code CHLOL (Appendix 1). For the preparation of neurocranium specimens, soft tissue was removed, and the specimens were placed in a 5% hydrogen peroxide solution, followed by drying in an oven at 40 °C overnight. To enhance bone suture visibility, the neurocrania were stained using an Alizarin Red S solution (3–5 ml Alizarin Red S mixed with 250 ml isopropanol and 500 ml water) and then dried again at 40 °C overnight.

All fresh specimens examined in this study were obtained from local fish markets and commercial fishers as part of their routine fishing activity. No live specimens were handled, euthanized, or subjected to experimental procedures requiring ethical approval under Institutional Animal Care and Use Committee (IACUC) regulations.

A total of 187 additional specimens from museum collections in Taiwan were also examined (Appendix 2), including those from the Biodiversity Research Museum, Academia Sinica, Taiwan (ASIZP); the Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan (FRIP); the National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (NMMB-P); the National Museum of Marine Science and Technology, Keelung, Taiwan (NMMST-P); the National Museum of Natural Science, Taichung, Taiwan (NMNSF); the National Taiwan Museum, Taipei, Taiwan (NTMP); and the National Taiwan University Museums, Taipei, Taiwan (NTUM). In addition, two specimens from the fish collection of Kyoto University (FAKU) at the Maizuru Fisheries Research Station, Kyoto, were included in this study.

2.2 Measurements

The terminology and methods for taking measurements and meristics followed Kailola (1999), Marceniuk et al. (2017), and Takahashi et al. (2019) (Figure 2). Skeletal terminology followed Acero and Betancur-R (2007) and Murray and Holmes (2022), while lapillus otolith terminology followed Lin and Chang (2012), Ohe (2000), and Lin et al. (2022) (Figure 2). The systematics follows the classification of Marceniuk et al. (2024).

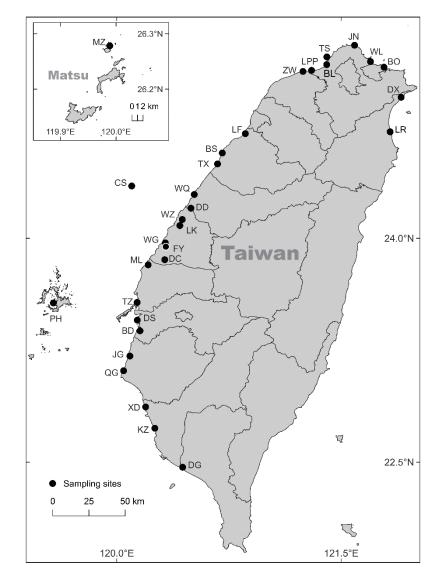


Figure 1. Sampling sites. BD, Budai Fishing Port, Chiayi; BL, Bali, New Taipei City; BO, Badouzi Fishing Harbor, Keelung; BS, Baishatun, Miaoli; CS, Changhua Sea; DC, Dacheng, Changhua; DD, Dadu River, Taichung; DG, Donggang, Pingtung; DS, Dongshi Fishing Port, Chiayi; DX, Daxi Fishing Port, Yilan; FY, Fangyuan, Changhua; JG, Jiangjun Fishing Port, Tainan; JN, Jinshan, New Taipei City; KZ, Kezailiao Harbor, Kaohsiung; LF, Longfeng Fishing Port, Miaoli; LK, Lukang, Changhua; LR, Lanyang River, Yilan; ML, Mailiao, Yunlin; MZ, Qiaozi, Matsu; LPP, Linkou Power Plant, New Taipei City; PH, Penghu; QG, Qigu District, Tainan; TX, Tongxiao Township, Miaoli; TS, Tamsui First Fishing Harbor, New Taipei City; TZ, Taizi Village Fishing Port, Yunlin; WG, Wanggong Fishing Port, Changhua; WL, Wanli, New Taipei City; WQ, Wuqi Fishing Port, Taichung; WZ, Wenzi Fishing Port, Changhua; XD, Xing Da Harbor, Kaohsiung; ZW, Zhuwei Fishing Harbor, Taoyuan.

78

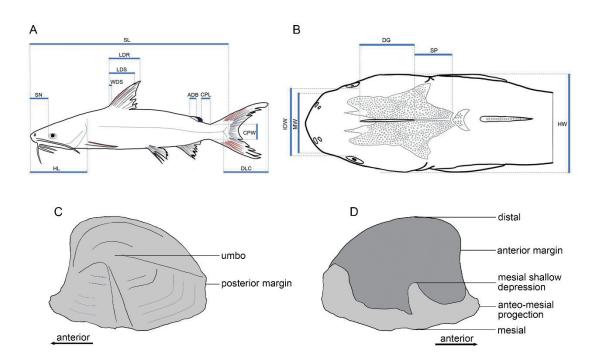


Figure 2. Schematic illustrations depicting the morphometric measurements (A–B) and otolith anatomical terminology (C–D) in Ariidae. A, lateral view of the fish; B, dorsal view of the head; C, dorsal view of the lapillus otolith; D, ventral view of the lapillus otolith. ADB, adipose-fin base length; CPL, caudal peduncle length; CPW, caudal peduncle width; DG, dorsomedial groove length; DLC, dorsal lobe length of caudal-fin. HL, head length; HW, head width; IOW, interorbital width; LDR, length of first dorsal-fin ray; LDS, length of dorsal-fin spine; MW, mouth width; SL, standard length; SN, snout length; SP, supraoccipital process length; WDS, width of dorsal spine.

2.3 DNA Extraction and Polymerase Chain Reaction (PCR)

Muscle tissue samples sliced from the collected ariid specimens were preserved in 95% EtOH and stored at -20 °C until DNA extraction. Some ariid individuals deposited at the Biodiversity Research Museum, Academic Sinica, Taiwan preserved both voucher and tissue specimens. The study not only morphologically inspected these ariid voucher specimens but also included their tissue specimens in the molecular phylogenetic analysis. DNA was extracted from 249 tissue samples by using a DNA Extraction Kit (GT100, Geneaid, Taiwan). PCR amplifications of the partial mitochondrial COI gene (approximately 650 bp) were performed in a mixture containing 5 ng template DNA, 12.5 µL of 2x Taq PCR MasterMix (GN-PCR201-01, Genomix), and 12.5 µmol of each forward and reverse primer-forward: FishF1+2 (5'-TCR ACY AAY CAY AAA GAY ATY GGC AC-3'); reverse: FishR1 (5'- TAG ACT TCT GGG TGG CCA AAG AAT CA-3') or FishR2 (5'-ACT TCA GGG TGA CCG AAG AAT CAG AA-3') (Chang et al., 2016)—made up to a final volume of 25 µL using distilled water. Thermal cycling began with one cycle at 95 °C for 4 min, followed by 35 cycles of denaturation at 95 °C for 30 s, 45-55 °C for 30 s, 72 °C for 30 s and, finally, a single extension step at 72 °C for 7 min. PCR products were purified using a PCR DNA Fragment Extraction Kit (Geneaid, Taipei, Taiwan). Sequencing was performed by Mission Biotech Inc., Taipei, Taiwan, using the same forward primer applied in PCR. The primer sequences linked to the amplified COI barcode sequence of each sample were trimmed using BioEdit 7.2 software. The final length of each COI sequence was 531 base pairs for Arius and Plicofollis, and 567 base pairs for Netuma. A total of 249 COI sequences generated in this study have been submitted to GenBank under accession numbers PQ656173 to PQ656300 and PQ658235 to PQ658355 (Appendix 3).

2.4 Phylogenetic Analysis

The phylogenetic analyses were separately conducted for the three distinct ariid genera, *Arius, Netuma*, and *Plicofollis*. Additional relevant sequences were downloaded from the NCBI GenBank database (Appendix 3). Three ariid *COI* datasets were aligned using MACSE v2, a software designed to align protein-coding nucleotide sequences based on their corresponding amino acid translations (Ranwez et al., 2018). The DnaSP v5 software was used to identify the haplotypes for each dataset, and only the haplotypes for each dataset underwent the Neighbor-Joining (NJ) analysis, based on Kimura 2-parameter (K2P) distances, to construct a distance tree with 10,000 bootstrap replicates using MEGA X (Kumar et al., 2018).

To construct the distance tree, only unique haplotypes were used to prevent redundancy while preserving all relevant genetic diversity. This approach is widely adopted in phylogenetic and species delimitation studies, as it allows for a clearer visualization of genetic relationships without the excessive representation of identical sequences (Xiao et al., 2022; Palandačić et al., 2024). Since the primary goal of this study was to resolve species boundaries rather than analyze intraspecific variation, the inclusion of redundant sequences would not have contributed additional taxonomic resolution.

3 **RESULTS**

3.1 Systematics

Family Ariidae Regan, 1911

Genus Arius Valenciennes, 1840

Arius Valenciennes in Cuvier & Valenciennes, 1840: 53 (type species: *Pimelodus arius* Hamilton, 1822; by absolute tautonymy). For the diagnosis of the genus, see Marceniuk et al. (2024: 452).

Arius maculatus (Thunberg, 1792)

Common name: Spotted catfish (English); 斑海鯰 (Chinese)

Figures 3A and 4

Silurus maculatus Thunberg, 1792: 31 (type locality: China, Japan; no types known).

Arius arius (not of Hamilton, 1822): Shen and Wu, 2011: 175.

Arius maculatus (Thunberg, 1792): Chen, 1969: 181; Shen, 1984: 136; Chen and Yu, 1985: 299; Shen, 1993: 146; Shen and Wu, 2011: 175; Koeda and Ho, 2020: 228.

Arius sinensis (not of Lacepède, 1803): Chen, 1954a, 1954b: 26.

Specimens examined. *Fresh material*: 158 specimens (see Appendix 1 for details). *Museum material*: 130 specimens (see Appendix 2 for details).

Diagnosis. Arius maculatus is a medium-sized fish reaching up to 400 mm TL. It can be distinguished from other ariids found in Taiwan by the following combination of characters: a longer dorsomedial groove that starts from the junction of the dorsomedian ridge (Figure 3) and extends to the posterior margin of the orbit; a conspicuous and high number of rugose granules on the supraoccipital bone; and a pair of large to medium-sized palatine tooth patches (Figure 4).

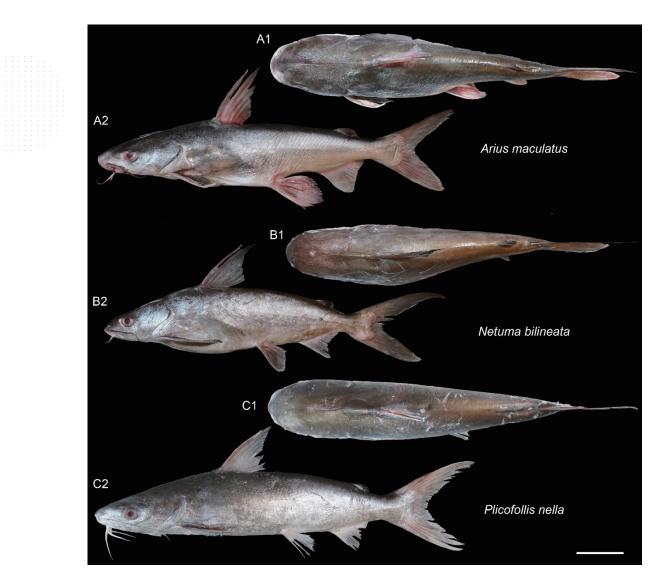


Figure 3. Fresh specimens of Ariidae species from Taiwan, shown in dorsal (1) and lateral (2) views. A, Arius maculatus, NTMP1735, 293.9 mm SL; B, Netuma nilineata, NTMP1753, 263.51 mm SL; C, Plicofollisn nella, NTMP1775, 310.35 mm SL. Scale bar = 5 cm.

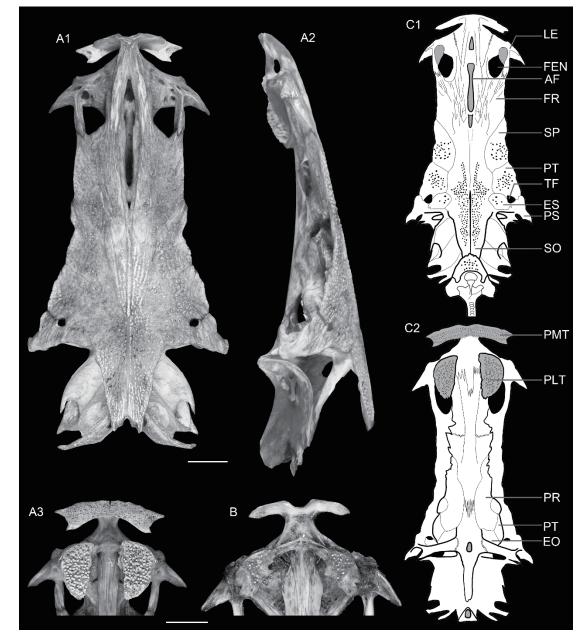


Figure 4. Neurocrania of *Arius maculatus*. A, CHLOL1318, 251.08 mm SL (A1 = dorsal view, A2 = lateral view, A3 = close-up of teeth); B, CHLOL1323, 300.29 mm SL, close-up of teeth (note that PMT was lost during specimen preparation); C, schematic illustrations depicting anatomical terminology (C1 = dorsal view, C2 = ventral view). AF, fontanelle; EO, exoccipital; ES, extrascapular; FEN, fenestra; FR, frontal; LE, lateral ethmoid; PLT, palatine tooth patch; PMT, premaxillary teeth; PR, prootic; PS, posttemporo-supracleithrum; PT, pterotic; SO, supraoccipital process; SP, sphenotic; TF, temporal fossa. Scale bars = 10 mm.

Description. The body is fusiform, scaleless, and smooth. The deepest part of the body is at the origin of the dorsal fin. The dorsal profile slopes gently from the dorsal fin to the end of the caudal peduncle but inclines more steeply toward the snout. An adipose fin is located just anterior to the caudal peduncle, with its base length about half that of the anal fin base. A prominent black blotch is visible on the upper part of the adipose fin. The dorsal and pectoral fin spines are very robust, bearing numerous small serrations that vary greatly in number. There are seven dorsal-fin rays, with the first one being conspicuously the longest. Additional morphometric data and meristic counts are provided in Tables 1 and 2.

Head: The head is dorso-ventrally compressed, while the body is laterally compressed. The supraoccipital bone is not conspicuously elevated but narrows posteriorly and ends in a truncated posterior tip. A distinct dorsomedial groove extends from the posterior margin of the orbit to the end of the supraoccipital bone. The supraoccipital bone is covered with irregular, rugose granules, which are easily visible from above. The mouth is inferior in position, with one pair of barbels on the maxilla and two pairs on the mandible. The maxillary barbels are longer than the mandibular barbels, extending nearly to the base of the pectoral fin. The outer mandibular barbels are longer than the inner ones. The nostrils are directed anteriorly; the anterior nostrils are oval, while the posterior nostrils are covered by flaps.

Teeth: The premaxillary teeth are villiform and pointed, forming a laterally broad band. A pair of mediumsized palatine tooth patches is located just behind the premaxillary teeth band. The palatine teeth are larger and more granular compared to the villiform premaxillary teeth. Two morphs of palatine tooth patches were observed (validated as belonging to a single species based on our molecular data; see Phylogenetic Analyses below): one with an elongated, parallel triangular shape converging posteriorly with up to 130 teeth (Type I; see Figure 4A3), and another with a small, widely divergent triangular shape with about 25 teeth (Type II; see Figure 4B). Teeth on the dentary form a pair of wide tooth bands similar to those of the premaxilla.

Coloration: The body and head are bluish-brown dorsally when fresh, turning grayish after death and brownish when preserved. The ventral side of the fish is whitish. When fresh, fins are whitish to reddish, with black tips.

Distribution. Japan, Taiwan, the Philippines, Thailand, Malaysia, Indonesia (Sumatra, Java, Kalimantan), and Sri Lanka (based on Kailola, 1999).

Remarks. The absence of type material for *A. maculatus* and the lack of a detailed description in the original account present significant taxonomic challenges for this species. This ambiguity likely stems from its wide distribution across the Indo-West Pacific, where this name has been applied to ariids with similar morphological traits. Thunberg (1792) described the species based on specimens from China and Japan, although no specific locality was provided. However, since only a single Arius species is known from Japan, and it matches our *Arius* specimens, we assign our Taiwanese specimens to *A. maculatus*.

Arius maculatus closely resembles *Arius arius*, as both share similar palatine tooth patch morphology and overlapping meristic counts (Kailola, 1999). According to Günther (1864), a distinguishing feature of *A. arius* is the prominent, filamentous first dorsal-fin ray, which may extend posteriorly to the caudal peduncle (e.g., Jayaram, 1977: 17). In contrast, in *A. maculatus*, the first dorsal-fin ray does not reach that far. One of our *A. maculatus* specimens does show a more extended first dorsal-fin ray compared to all other specimens (Figure 5, specimen CHLOL21701), although it still does not reach the caudal peduncle. However, DNA barcoding confirmed that this particular specimen is nested with all other specimens (see below).

Figure 5. *Arius maculatus*, CHLOL21701, 25.274 mm SL. Scale bar = 5 cm. Note that the dorsal fin spine was cut off when the specimen was collected.

We recognized two palatine tooth patch patterns in *A. maculatus*. The elongate palatine tooth patch (Type I), found in our *A. maculatus* specimens, is similar to those depicted for *A. arius* by Kailola (1999: 1840). However, illustrations by Günther (1864: 170) and Jayaram (1977: 10) suggest a slightly different morphology in palatine tooth patches, particularly with more sharply constricted posterior ends in *A. arius*. In addition, the tooth patch in *A. maculatus* appears to be positioned more posteriorly, although this character is difficult to determine with certainty (Kailola, 1999: 1854). While the morphology of the palatine tooth patch and the filamentous first dorsal-fin ray are considered diagnostic features of *A. arius*, both features are distinct from those observed in our specimens.

In contrast to the more common Type I palatine tooth patch, the second pattern (Type II) is rare among the examined specimens. The Type II tooth patch is shorter and more widely separated, forming a small, triangular or irregularly rounded patch with fewer teeth (Figure 4B). This pattern resembles the palatine tooth patch of *A*. *dispar* illustrated by Kailola (1999: 1846), although Kailola's depiction appears more rounded in comparison.

Another species closely related to *A. maculatus* is *A. sinensis*, which occurs in Vietnam and the South China Sea and was reported by Chen (1954a, b) in Taiwan. The original description by Valenciennes (1840) is vague, with many features largely overlapping with those observed in our *Arius* specimens. However, X-ray examination of the holotype of *A. sinensis* (Muséum national d'histoire naturelle, MNHNB-2620; Figure 6) reveals lower counts of anal fin rays and vertebrae compared to our specimens (13 vs. 15–19 anal fin rays;49 vs. 50–53 vertebrae), suggesting that our specimens represent a different species. Because *A. sinensis* has been previously recognized as a junior synonym of *Arius maculatus* (Kailola, 2004; Kottelat, 2013), further investigation is needed to verify the validity of *A. sinensis*.

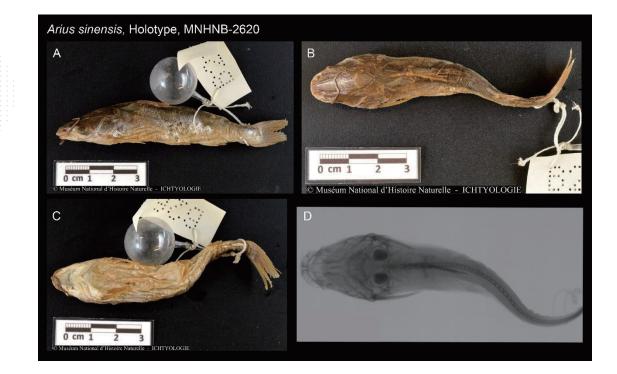


Figure 6. Arius sinensis, MNHNB-2620, holotype. A, lateral view; B, dorsal view; C, ventral view; D, radiograph of dorsal view.

Kailola (1999) also listed *Arius arenarius* and *Arius dispar* as occurring in Taiwan, although no referable specimens are available. Furthermore, Kailola (1999) illustrated *A. arenarius* as having two pairs of palatine tooth patches (a smaller, rounded anterior pair and a larger, triangular posterior pair), in contrast to the single pair found in *A. maculatus*.

Genus Netuma Bleeker, 1858

Netuma Bleeker, 1858: 62, 67, 93 (type species: *Bagrus netuma* Valenciennes, 1840; by absolute tautonymy). For the diagnosis of the genus, see Marceniuk et al. (2024: 450).

Netuma bilineata (Valenciennes, 1840)

Common name: Bronze catfish (English); 雙線多齒海鯰 (Chinese)

Figures 3B and 7

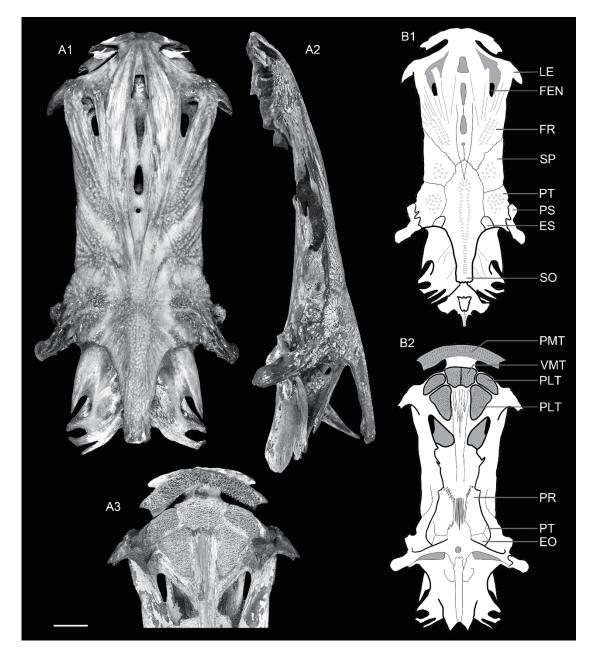


Figure 7. Neurocrania of *Netuma bilineata*. A, CHLOL1324, 307.85 mm SL (A1 = dorsal view, A2 = lateral view, A3 = close-up of teeth); B1, schematic illustrations depicting anatomical terminology (B1 = dorsal view, B2 = ventral view). AF, fontanelle; EO, exoccipital; ES, extrascapular; FEN, fenestra; FR, frontal; LE, lateral ethmoid; PLT, palatine tooth patch; PMT, premaxillary teeth; PR, prootic; PS, posttemporo-supracleithrum; PT, pterotic; SO, supraoccipital process; SP, sphenotic; VMT, vomerine tooth patch. Scale bar = 10 mm.

Bagrus bilineatus Valenciennes, 1840: 434 (type locality: India; syntypes: MNHN A-9344).

Arius thalassinus (not of Rüppell, 1837): Chen, 1954a: 8; Chen, 1969: 181; Shen, 1984: 136; Chen and Yu, 1985: 302; Chen, 2004: 37.

Arius thalassimus (not of Rüppell, 1837): Chen, 1954b: 26.

Netuma thalassina (not of Rüppell, 1837): Shen and Wu, 2011: 176.

Specimens examined. *Fresh material:* 85 specimens (see Appendix 1 for details). *Museum material:* 40 specimens (see Appendix 2 for details).

Diagnosis. *Netuma bilineata* is a medium-sized fish reaching up to 400 mm TL. It differs from the two other Taiwanese ariids by having a pair of large, connected vomerine tooth patches, two pairs of autogenous tooth patches, and a lack of a dorsomedial groove.

Description. The body of *N. bilineata* is fusiform and scaleless. The dorsal profile slopes gently from the origin of the dorsal fin both toward the snout and the end of the caudal peduncle. The adipose fin is uniformly dark, with its base length less than half that of the anal fin base. The dorsal- and pectoral-fin spines are robust, though the dorsal-fin spine is narrower than the pectoral fin spines. The edges of the fin spines are covered with numerous small serrations. Additional morphometric data and meristic counts are provided in Tables 1 and 2.

	Arius maculatus			Netuma bilineata			Plicofollis nella		
SL (mm)	77.56-382.27 mm (n=171)			66.73-370.58 mm (n=102)			88.07-680.00 mm (n=99)		
%SL	Mean	Range	SD	Mean	Range	SD	Mean	Range	SD
Length of first dorsal-fin ray	25.0	19.0-32.8	3.1	26.1	18.3-32.5	2.4	21.9	17.5-25.7	1.6
Length of dorsal-fin spine	19.6	16.0-25.3	1.6	21.1	16.6-24.3	1.5	18.9	14.9-21.5	1.6
Width of dorsal spine	1.8	1.4-2.6	0.2	1.2	0.9-2.1	0.2	1.5	1.1-1.9	0.1
Dorsomedial groove length	13.3	11.3-17.0	0.9	10.0	6.4-13.7	1.5	10.4	6.5-20.9	1.9
Supraoccipital process length	10.6	9.1-13.3	0.6	13.9	9.2-16.2	1.4	12.8	10.4-15.2	0.8
Head length	29.0	23.6-33.0	1.7	28.2	24.6-32.7	2.0	30.5	23.5-34.6	1.4
Snout length	11.2	9.2-13.4	0.8	11.2	8.7-14.3	1.1	13.5	10.3-15.4	0.9
Head width	20.5	16.6-22.7	0.8	20.0	18.5-24.6	0.9	20.2	11.0-22.7	1.5
Interorbital width	14.3	10.2-17.3	1.3	14.4	11.3-17.1	1.2	16.9	12.5-19.5	1.2
Mouth width	13.9	11.5-18.1	1.0	14.7	13.1-17.6	0.9	11.7	10.0-13.9	0.8
Adipose-fin base length	6.0	1.9-9.0	1.0	4.0	3.3-4.9	0.5	4.1	2.8-5.5	0.6
Caudal peduncle length	14.7	12.4-18.1	1.1	14.0	10.9-17.2	1.1	14.3	11.7-16.7	0.9
Caudal peduncle	6.8	5.4-8.4	0.4	6.7	6.0-8.4	0.4	7.4	5.7-9.7	0.5
width									
Dorsal lobe length of caudal fin	25.4	19.6-29.6	1.7	32.0	20.9-38.0	2.6	26.0	15.9-29.6	2.2

Table 1. Morphometric data of ariid species from Taiwan.

87

	Total gill rakers										
	n	10	11	12	13	14	15	16	17	18	19
Arius maculatus	109					1	4	15	59	23	7
Netuma bilineata	71		1	10	40	19	1				
Plicofollis nella	82	1	3	8	39	26	5				
	Pectoral-fin rays						-				
	n	8	9	10	11	12	13				
Arius maculatus	109	1	11	70	27						
Netuma bilineata	71			27	44						
Plicofollis nella	81			4	29	46	2				
		-	-	-	An	al-fins 1	ays	-	-	•	-
	n	14	15	16	17	18	19				
Arius maculatus	109		2	14	46	39	8				
Netuma bilineata	70	1	3	40	24	2					
Plicofollis nella	80	9	41	25	5						

Table 2. Meristic counts of ariid species from Taiwan.

Head: The head is broad laterally and compressed dorsal-ventrally. The supraoccipital bone is conspicuously elevated, narrowing posteriorly to a truncate posterior tip. The dorsomedial groove is covered by a thin layer of skin and is not visible. The supraoccipital bone is adorned with irregular, rugose granules. The mouth is inferior and round, accompanied by one pair of maxillary barbels and two pairs of mandibular barbels. The maxillary barbels are the longest but do not reach the base of the pectoral fin. The outer mandibular barbels are longer than the inner ones. The nostrils are directed anteriorly, with oval anterior nostrils and larger posterior nostrils covered by flaps.

Teeth: The premaxillary teeth are needle-shaped, forming a laterally broad, elongate band. A pair of vomerine tooth patches is tightly connected at the midline. Two pairs of autogenous tooth patches are located behind the vomerine tooth patches: a pair of subrectuangular anterior patches and a larger pair of triangular posterior patches with an elongated posterior end. Both the vomerine and autogenous tooth patches are densely packed with villiform teeth.

Coloration: The body and head are uniformly brownish to bronze dorsally and whitish ventrally. The fins are white, with dusk-colored tips.

Distribution. Widespread across Indo-West Pacific, including waters off Japan, Taiwan, the Philippines, Indonesia, New Guinea, Australia, the South China Sea, Vietnam, Thailand, Myanmar, Singapore, India, the Arabian Sea, Pakistan, and the Persian Gulf (Kailola, 1986; Kailola in Randall & Lim, 2000; Ng, 2003; Ng, 2012; Psomadakis et al., 2015; Psomadakis et al., 2019; Sonoyama et al., 2020).

Remarks. In Taiwan, *Netuma bilineata* has long been misidentified as *N. thalassina*, a closely related congeneric species. However, recent morphological and molecular evidence has confirmed the distinctiveness of *N. bilineata* from *N. thalassina* (Takahashi et al., 2019). Our specimens of *N. bilineata* differ from those of *N. thalassina* described by Kailola (1986) and Takahashi et al. (2019) in several diagnostic features: *N. bilineata* possesses a pair of connected vomerine tooth patches (vs. separated vomerine tooth patches in *N. thalassina*), a rounded snout (vs. a pointed snout), and a narrower supraoccipital bone.

Genus Plicofollis Kailola, 2004

Plicofollis Kailola, 2004: 141 (type species: *Arius argyropleuron* Valenciennes, 1840; by original designation). For the diagnosis of the genus, see Marceniuk et al. (2024: 451).

Plicofollis nella (Valenciennes, 1840)

Common name: Smooth-headed catfish (English); 內爾褶囊海鯰 (Chinese)

Figures 3C and 8

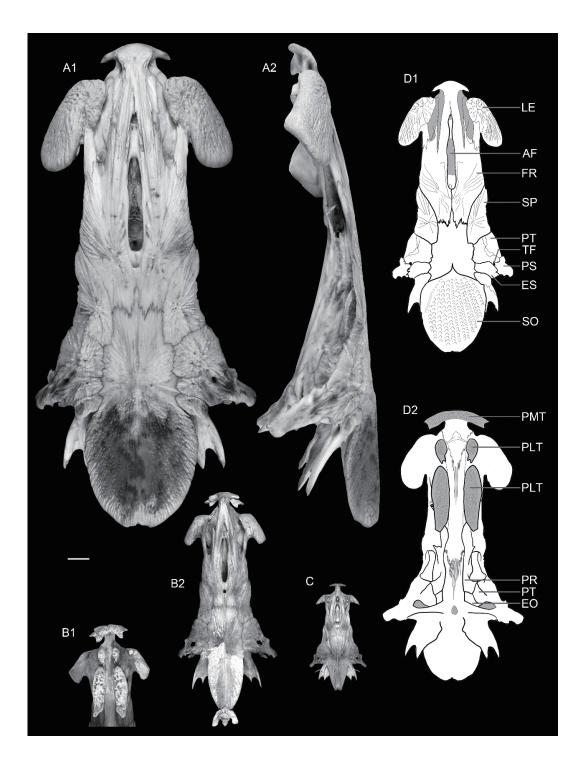


Figure 8. Neurocrania of *Plicofollis nella*. A, CHLOL5866, 545.00 mm SL (A1 = dorsal view, A2 = lateral view); B, CHLOL1390, 239.33 mm SL (B1 = close-up of teeth, B2 = dorsal view); C, CHLOL21712, 136.72 mm SL; D, schematic illustrations depicting anatomical terminology (D1 = dorsal view, D2 = ventral view). AF, fontanelle; EO, exoccipital; ES, extrascapular; FR, frontal; LE, lateral ethmoid; PLT, palatine tooth patch; PMT, premaxillary teeth; PR, prootic; PS, posttemporo-supracleithrum; PT, pterotic; SO, supraoccipital process; SP, sphenotic; TF, temporal fossa. Scale bar = 10 mm.

90

Pimelodus nella Valenciennes in Cuvier & Valenciennes, 1840: 162 (type locality: India; holotype not exist).

Plicofollis nella (Valenciennes, 1840): Jayaram and Dhanze, 1978: 48; Kailola, 1999: 1858; Kailola in Randall & Lim, 2000: 589; Kailola, 2000: 127; Ng, 2003: 10; Kailola, 2004: 142; Marceniuk and Menezes, 2007: 93; Ferraris, 2007: 52; Shen and Wu, 2011: 175; Marceniuk et al., 2012: 667; Kottelat, 2013: 250; Marceniuk et al., 2017; Koeda and Ho, 2019: 229.

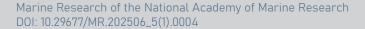
Specimens examined. *Fresh material:* 94 specimens (see Appendix 1 for details). *Museum material:* 19 specimens (see Appendix 2 for details).

Diagnosis. *Plicofollis nella* is a large-sized fish, reaching up to 700 mm TL. It differs from the other two ariids found in Taiwan by having a large, oblong ethmoid bone that is prominent in dorsal view, a nearly smooth supraoccipital bone, and a pair of extremely elongated palatine autogenous tooth patches. The mouth is relatively small in compared to other ariid species in Taiwan.

Description. The body is fusiform and the skin is scaleless. The dorsal profile slopes gently from the origin of the dorsal fin toward both the snout and the end of the caudal peduncle. The adipose fin is uniformly dark, with its base length less than half that of the anal-fin base. The dorsal- and pectoral-fin spines are strong and of similar size. The edge of the fin spines presents numerous small serrations. Additional morphometric data and meristic counts are provided in Tables 1 and 2.

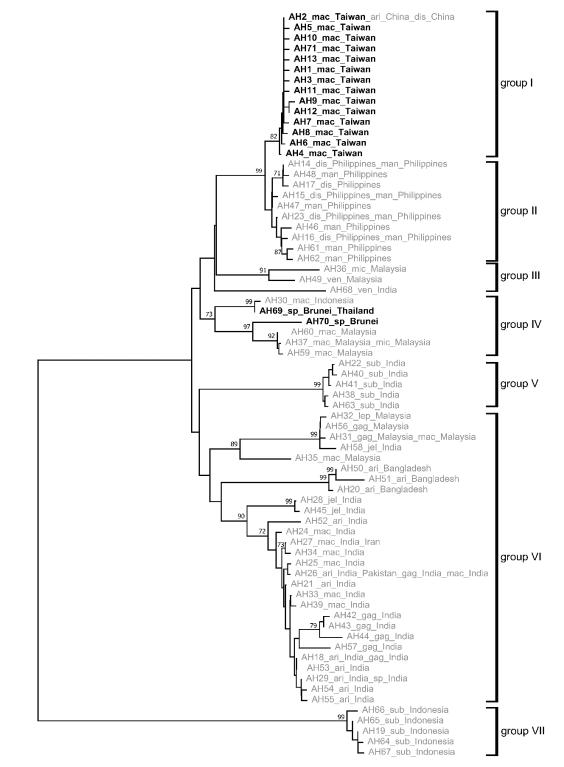
Head: The head is dorsal-ventrally compressed and tapers anteriorly. The supraoccipital bone is slightly elevated along the midline, widening halfway to form a salient, circular shield. In younger individuals, the supraoccipital bone has a more triangular outline (Figure 8C). The dorsomedial groove is deep but short, extending to the base of the supraoccipital bone but not reaching the posterior margin of the orbit. When fresh, a noticeable white blotch is visible just anterior to the dorsomedial groove. In larger individuals, a limited number of rugose granules are present only on the anterior part of the supraoccipital bone. The ethmoid bone, located just anterior to the orbit, is large, oblong, and conspicuously raised. The mouth is inferior and relatively small. A pair of maxillary barbels and two pairs of mandiblar barbels are present. The maxillary barbels are the longest, nearly reaching the margin of the opercle. The outer mandibular barbels are longer than the inner ones, both reaching the orbits. The nostrils are oval and anteriorly directed, with larger posterior nostrils covered by flaps.

Teeth: The premaxillary teeth are villiform, forming an elongate lateral band. A pair of oval vomerine tooth patches and a pair of markedly elongated palatine autogenous tooth patches are present. These tooth patches are entirely filled with villiform teeth, aligned parallel to the mesial axis, and spaced apart from one another.


Coloration: The body is bluish-brown dorsally when fresh, becoming dark gray after death. The ventral side is uniformly whitish. When fresh, the fins are whitish to reddish, with black-tipped edges.

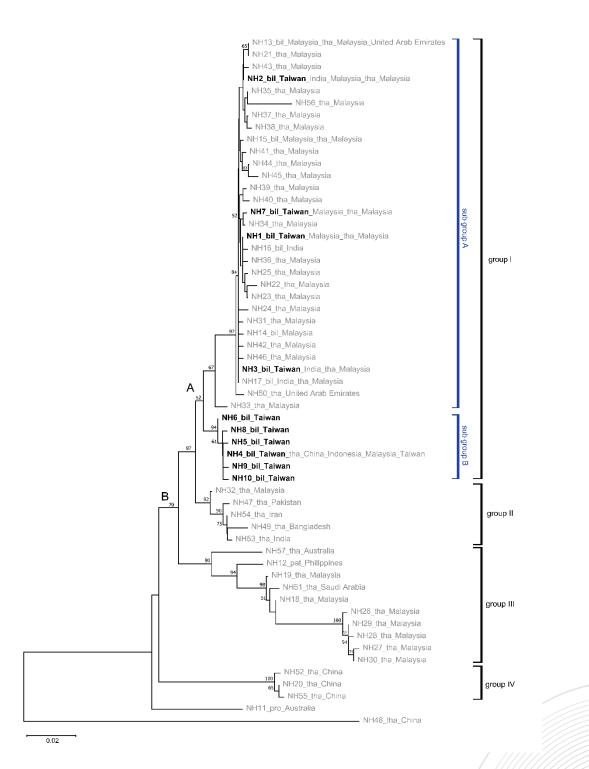
Distribution. Taiwan, the Philippines, South China Sea, Vietnam, Thailand, Malaysia, Singapore, Indonesia, India, New Guinea, and Australia (Jayaram & Dhanze, 1978; Kailola, 1999; Kimura et al., 2009; Kottelat, 2013; Kimura et al., 2019).

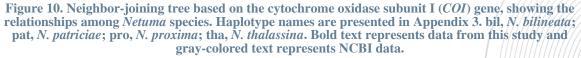
Remarks. *Plicofollis nella* closely resembles the tropical congener *P. polystaphylodon*. According to Marceniuk (2017), the key distinguishing feature is the width of the supraoccipital bone. In *P. polystaphylodon*, the supraoccipital bone is more restricted and does not form a prominent, round shield, whereas in *P. nella*, the shield is wide and circular. In addition, the dorsomedial groove in *P. polystaphylodon* is longer, extending anteriorly to just behind the nostrils. In contrast, the dorsomedial groove in *P. nella* is shorter, and does not extend to the posterior margin of the orbit (Kailola, 1999).


3.2 Phylogenetic Analyses

The *Arius, Netuma*, and *Plicofollis COI* datasets for the NJ analysis were 504 base pairs long and included 71, 57, and 15 taxa, respectively. *Arius* contained 161 variable sites and 150 parsimony-informative sites; *Netuma* contained 165 variable sites and 94 parsimony-informative sites; and *Plicofollis* contained 83 variable sites and 60 parsimony-informative sites. The NJ analysis for *Arius* revealed seven monophyletic groups with an average K2P distance of 0.1157. All *A. maculatus* specimens from Taiwan were closely related, with an average K2P distance of 0.0039, and clustered together in group I with high statistical support (bootstrap values > 70; Figure 9). Sequences from three specimens exhibiting the Type II palatine tooth patch were nested within those of the more common Type I tooth patch (haplotypes AH2 and AH5), indicating that both tooth types represent a single species—*A. maculatus*.

Taxonomic Review of the Sea Catfish Family Ariidae in Taiwar





0.02

Figure 9. Neighbor-joining tree based on the cytochrome oxidase subunit I (COI) gene, showing the relationships among Arius species. Haplotype names are presented in Appendix 3. ari, A. arius; dis, A. dispar; gag, A. gagora; jel, A. jella; lep, A. leptonotacanthus; mac, A. maculatus; man, A. manillensis; mic, A. microcephalus; sub, A. subrostratus; ven, A. venosus; sp, Arius sp. Bold text represents data from this study and gray-colored text represents NCBI data.

For *Netuma*, the NJ analysis revealed six monophyletic groups, with an average K2P distance of 0.1307. The *N. bilineata* specimens from Taiwan are distributed in group I, which also includes sequences of *N. thalassina* (Figure 10). It was also observed that *N. bilineata* and *N. thalassina* share some *COI* haplotypes.

💩 🔬 🤿 🔛 😼

In the NJ analysis for *Plicofollis*, three monophyletic groups were identified, with an average K2P distance of 0.0749 (Figure 11). All *P. nella* specimens from Taiwan are in group I, which also contains one *P. polystaphylodon* haplotype. The average K2P distance among these taxa in group I is 0.0067.

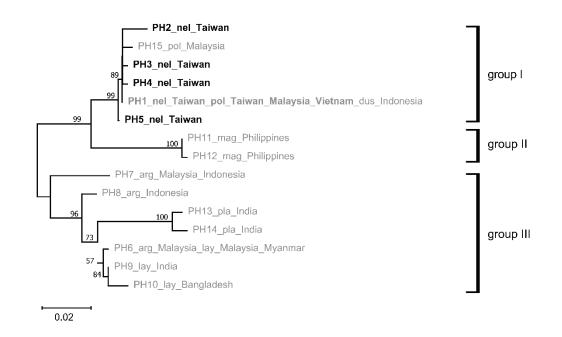


Figure 11. Neighbor-joining tree based on the cytochrome oxidase subunit I (*COI*) gene, showing the relationships among *Pliocfollis* species. Haplotype names are presented in Appendix 3. arg, *P. argyropleuron*; dus, *P. dussumieri*; lay, *P. layardi*; mag, *P. magatensis*; nel, *P. nella*; pla, *P. platystomus*; pol, *P. polystaphylodon*. Bold text represents data from this study and gray-colored text represents NCBI data.

4 **DISCUSSION**

4.1 Morphological Comparisons of Neurocrania and Otoliths

A typical neurocranium in the family Ariidae is characterized by a rigid head shield composed of a large supraoccipital bone (with the parietal fused to the supraoccipital; see Malabarba & Malabarba, 2020), a "complex centrum" formed by the fusion of the first four vertebrae (Malabarba & Malabarba, 2020), and swollen otic capsules (bulla acoustico utricularis) made up of the prootic, pterotic, and exoccipital bones (Acero & Betancur-R, 2007).

The dorsal view of the neurocranium reveals the most distinct differences among the three ariid species found in Taiwan. The fenestra between the lateral ethmoid and frontal bones (Murray & Holmes, 2022) is present only in *A. maculatus* and *N. bilineata*, with the size of the fenestra being significantly larger in *A. maculatus*. In contrast, in *P. nella*, this fenestra is filled by the parasphenoid. Additionally, the lateral ethmoid in *P. nella* is markedly swollen and hyperostotic, both laterally and posteriorly. The anterior fontanelle in *N. bilineata* is fused in the middle, forming two separate fontanelles, while in *A. maculatus* and *P. nella*, it remains unfused and bar-like. Furthermore, the temporal fossa is present in both *A. maculatus* and *P. nella*. The epioccipital bone is dorsally exposed in *P. nella*, whereas its condition is less determinate in *A. maculatus* and *N. bilineata*. Finally, the supraoccipital bone varies in shape: it is widest and rounded in *P. nella*, triangular in *A. maculatus*, and narrowest in *N. bilineata*.

The otoliths described in this study are all lapilli, the largest of the three pairs of otoliths found in Ostariophysi (Cypriniformes and Siluriformes) fishes (Nolf, 1985). Lapilli in ariids are typically thick and bulky, with a distinct subtriangular outline (Ohe, 2006; Lin & Chien, 2022; Lin et al., 2018, 2022). The dorsal face is marked by an elevated umbo, and annuli (growth rings) can be observed in the mesial area. On the ventral face, a shallow mesial depression is present in the middle of the otolith. The anterior rim of the otoliths has an anterior-mesial projection, while the posterior rim varies in shape from angular to rounded (Ohe, 2006; Aguilera et al., 2013; Aguilera et al., 2020). The lapilli of *A. maculatus*, *N. bilineata*, and *P. nella* are best distinguished by the shape of the posterior rim: it is gently curved in *A. maculatus*, truncated in *N. bilineata*, and pointed in *P. nella* (Figure 12). The umbo is prominently elevated, forming a discontinuous surface on the dorsal face in both *N. bilineata* and *P. nella*, whereas in *A. maculatus*, it appears to be less pronounced, and the dorsal surface is smoother.

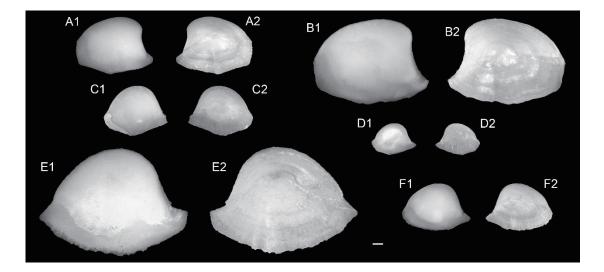


Figure 12. Otoliths (lapilli) of ariid species from Taiwan. A–B, *Arius maculatus*; C–D, *Netuma bilineata*; E–F, *Plicofollis nella*; 1 = ventral view; 2 = dorsal view. A, CHLOL21711, 123.79 mm SL; B, CHLOL21778, 213.06 mm SL; C, CHLOL21676, 125.28 mm SL; D, CHLOL21788, 66.73 mm SL; E, CHLOL5866, 545 mm SL; F, CHLOL21712, 136.72 mm SL. Scale bar = 1 mm.

4.2 How Many Sea Catfishes Are Present in Taiwan? — Molecular Evidence

The results of the NJ analyses, combined with morphological evidence, confirm the presence of only three ariid species in Taiwan: *A. maculatus*, *N. bilineata*, and *P. nella*. However, the NJ analyses frequently revealed that a single *COI* haplotype may represent multiple ariid species, and haplotypes from the same species did not always cluster into monophyletic groups. This phenomenon may be attributed to several factors, including gene flow between species (e.g., hybridization or introgression) or insufficient divergence time between species for complete lineage sorting. Alternatively, it is more likely that the presence of subtle diagnostic characters in ariid fishes and incomplete taxonomic work have led to misidentifications, complicating molecular analyses. Therefore, the NJ analyses could not reveal a one-species-to-one-monophyletic-group relationship.

For example, haplotype AH2 was found in specimens identified as *A. arius* and *A. dispar* from China, as well as *A. maculatus* from Taiwan. The Chinese sequences were obtained from GenBank but lack formal publication and are not linked to any verifiable voucher specimens, making their taxonomic validity uncertain. Given that *A. maculatus* is well-supported as a distinct species in our study—validated by multiple voucher specimens deposited in public museums—the presence of the same haplotype in other Arius species suggests either misidentification in the Chinese records or unresolved historical taxonomical issues. This underscores the need for a comprehensive taxonomic reassessment of *Arius* species from China to resolve these discrepancies. Similarly, the NJ analysis for *Arius* revealed that *A. maculatus* from Taiwan (group I in Figure 9) is closely related to *A. dispar* and *A. manillensis* from the Philippines (group II in Figure 9). Referring to the previous fish barcoding studies in the Western Pacific Ocean (Chang et al., 2017; Hou et al., 2018; Thu et al., 2019; Huang et al., 2023), the average K2P genetic distance between these two groups (0.016) falls between intraspecific and congeneric levels, highlighting the need for taxonomical revision of these three species.

The NJ analysis for *Netuma* also suggests that individuals of *N. bilineata* are often misidentified as *N. thalassina*. Additionally, *N. thalassina* appears to comprise multiple cryptic species, as it exhibits a polyphyletic pattern in the NJ analysis (see also Takahashi et al., 2019).

For *P. nella*, specimens from Taiwan formed a monophyletic group with *P. polystaphylodon* from Malaysia (haplotype PH15). However, the Malaysian sequence retrieved from GenBank lacks formal documentation and is not linked to authenticated voucher specimens, raising uncertainty about its taxonomic reliability. Given that *P. nella* is clearly defined both morphologically and genetically in our study, and considering that *P. polystaphylodon* has been historically confused with *P. nella* in previous literature, our results suggest that the Malaysian specimen identified as *P. polystaphylodon* may, in fact, be *P. nella*. Nevertheless, a comprehensive taxonomic reassessment of Malaysian specimens—integrating both morphological and molecular data—is necessary to confirm their true identity.

In addition, we recommend the revision of misidentified Ariidae specimens from Taiwan, such as ASIZP0803238–39 (*N. thalassina*) to *N. bilineata* and ASIZP0900157 (*A. leiotetocephalus*), ASIZP0807329 (*P. polystaphylodon*), and ASIZP0917391 (*P. polystaphylodon*) to *P. nella*. There is also a need to revise the names of Ariidae sequences from Taiwan uploaded to GenBank, such as KU943008–09 (*N. thalassina*) to *N. bilineata*.

Overall, these results emphasize the need for a comprehensive taxonomic revision of Ariidae in the region. Enhanced molecular analyses, combined with detailed morphological studies, are essential to resolve the persistent issues of misidentification and cryptic diversity within this family (Marceniuk et al., 2024).

4.3 Taxonomic Resolution and Regional Implications for Ariidae in Taiwan

Despite the historical use of numerous scientific names in the literature, our study confirms the presence of only three species of Ariidae in Taiwan, belonging to three genera: *A. maculatus*, *N. bilineata*, and *P. nella*. While previous studies suggested the presence of multiple *Arius* species, direct comparison with *A. maculatus* specimens from Japan (the type locality) supports the identification of the Taiwanese *Arius* species, even in the absence of type material. Our comparison with *N. bilineata* specimens described by Takahashi et al. (2019) validated the identity of our *Netuma* species, which has long been misidentified as *N. thalassina*, and we suggest that all *Netuma* specimens from Taiwan should be assigned to *N. bilineata*. The distinct morphological characteristics of *P. nella* made it the easiest species to confirm.

In summary, the morphological distinctions among these three ariid species are based on the following characteristics: the pattern of tooth patches on the upper jaw, the size of lateral fenestra and lateral ethmoid, the shape of the supraoccipital bone, and the extent of the dorsomedial groove. These morphological features are supported by otolith morphology and molecular evidence. Figure 13 provides a pictorial summary of these distinctions.

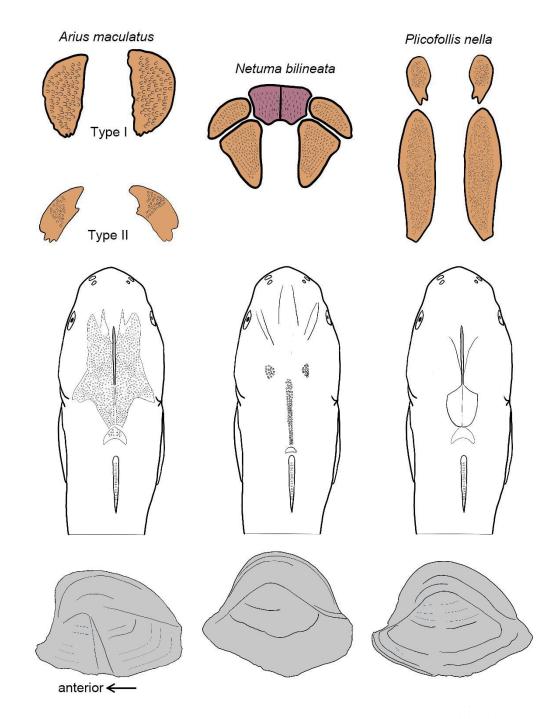


Figure 13. Summary of key morphological differences among ariid species in Taiwan, highlighting distinguishing characteristics of *Arius maculatus*, *Netuma bilineata*, and *Plicofollis nella*. Upper row: tooth patch patterns (orange: palatine tooth patches; dark pink: vomerine tooth patch); middle row: dorsal views of the fish; lower row: lapillus otoliths.

Our study indicates that the three ariid species in Taiwan exhibit overlapping geographic distributions along the western coastal waters of Taiwan. Based on available records and specimen collection data, we observed no clear evidence of geographic segregation among these species. We recommend that further ecological and biogeographical studies be conducted following our taxonomic revision, as such insights would be valuable for improving conservation strategies and fisheries management of Taiwan's coastal ariid species.

Notably, the diversity of ariid fish in the West Pacific appears to decline with increasing latitude. Ariids are extremely rare in temperate Japanese waters (Y. Kai, pers. comm.), with *A. maculatus*, *N. bilineata*, and *P. nella* being the only three species documented in both Taiwan and Japan (Nakabo, 2013). In contrast, the diversity of sea catfishes increases significantly in lower latitudes, as demonstrated in the Philippines, where Kailola (1999) listed 12 ariid species, including *Arius manillensis*, *Arius venosus*, *Arius dispar*, *A. maculatus*, *Arius utik* (= *Arius oetik*), *Arius arenarius*, *Arius sagor* (= *Hexanematichthys sagor*), *A. thalassinus* (= *N. thalassina*), *A. bilineatus* (= *N. bilineata*), *Arius argyropleuron* (= *Plicofollis argyropleuron*), *A. nella* (= *P. nella*), *Arius crossocheilus* (= *Plicofollis tonggol*). Moreover, Takahashi et al. (2019) described yet another species, *Netuma patriciae*, from the Philippines. However, the identification of these closely related ariid species remains extremely challenging due to the lack of detailed diagnoses and clear species delimitations.

Sea catfishes are economically important in coastal areas of Southeast Asia, yet taxonomic work on this group lags behind, which may pose challenges for fishery management. Although molecular data on sea catfishes exist (Nasihin-Seth et al., 2019; Santo & Quilang, 2011; Quilang & Yu, 2015; Yu & Quilang, 2014), these studies often lack the necessary morphological evidence and voucher specimens, making the DNA sequences insufficient for taxonomic purposes. Our extensive sampling, examination of museum collections, and combination of detailed morphological descriptions with molecular data provide a solid foundation for clarifying the relatively simple taxonomy of this family in Taiwanese waters. This approach also offers valuable insights for resolving more complex taxonomic groups in lower latitudes. However, further studies employing similar methodologies are needed in adjacent regions to ensure comprehensive taxonomic understanding.

ACKNOWLEDGEMENTS

We thank Dr. Yoshiaki Kai (Maizuru Fisheries Research Station, Kyoto University) for assistance with the loan of Japanese comparative materials, and Dr. Shih-Pin Huang (Biodiversity Research Museum, Academia Sinica) for helping arrange and deposit voucher and comparative specimens. We are grateful to Dr. Chih-Wei Chang (National Academy of Marine Research, Taiwan) and Kai-Tin Wang for helpful discussion during the preparation of the manuscript. We also thank Chun-Wei Chen, Chao-Chan Huang, Hsin-Wei Liu and the members of the Marine Paleontology Lab (https://otolithlin.biodiv.tw/), BRCAS, for their assistance with sample collection and preparation. Dr. László Kocsis (Institute of Earth Surface Dynamics, University of Lausanne, Switzerland) is thanked for providing samples from Brunei. The contents of this paper are derived from the MSc thesis of Ying-Cheng Tseng (Institute of Fisheries Science, National Taiwan University; thesis supervisors: Chien-Hsiang Lin, Shan-Hua Yang, Chia-Hao Chang). Funding: The National Science and Technology Council, Taiwan (Grant No. 108-2116-M-029-001-MY2, 109-2116-M-001-022, 110-2116-M-001-009, 111-2116-M-001-033, and 112-2116-M-001-485 017-MY3) and Academia Sinica, Taipei, Taiwan, awarded to Chien-Hsiang Lin.

REFERENCES

- Acero, A., & Betancur-R, R. (2007). Monophyly, affinities, and subfamilial clades of sea catfishes (Siluriformes: Ariidae). *Ichthyological Exploration of Freshwaters*, *18*(9), 133–143.
- Aguilera, O. A., Moraes-Santos, H., Costa, S., Ohe, F., Jaramillo, C., & Nogueira, A. (2013). Ariid sea catfishes from the coeval Pirabas (Northeastern Brazil), Cantaure, Castillo (Northwestern Venezuela), and Castilletes (North Colombia) formations (early Miocene), with description of three new species. *Swiss Journal of Palaeontology*, *132*, 45–68. https://doi.org/10.1007/s13358-013-0052-4
- Aguilera, O., Lopes, R. T., Rodriguez, F., Santos, T. M., Rodrigues-Almeida, C., Almeida, P., Machado, A. S.,
 & Moretti, T. (2020). Fossil sea catfish (Siluriformes; Ariidae) otoliths and in-skull otoliths from the Neogene of the Western Central Atlantic. *Journal of South American Earth Sciences*, 101, 102619. https://doi.org/10.1016/j.jsames.2020.102619
- Chang, C. H., Lin, H. Y., Ren, Q., Lin, Y. S., & Shao, K. T. (2016). DNA barcode identification of fish products in Taiwan: Government-commissioned authentication cases. *Food Control*, 66, 38–43. https://doi.org/10.1016/j.foodcont.2016.01.034
- Chang, C. H., Shao, K. T., Lin, H. Y., Chiu, Y. C., Lee, M. Y., Liu, S. H., & Lin, P. L. (2017). DNA barcodes of the native ray-finned fishes in Taiwan. *Molecular Ecology Resources*, 17(4), 796–805. https://doi.org/10.1111/1755-0998.12601
- Chen, C. H. (2004). Checklist of the fishes of Penghu. FRI Special Publication. (In Chinese)
- Chen, J. T., & Yu, M.-J. (1985). *A synopsis of the vertebrates of Taiwan* (Revised and enlarged edition). The Commercial Press. (In Chinese)
- Chen, J. T. (1954a). *List of common names of the fishes of Taiwan in Chinese, English and Japanese*. Fisheries Agency, Council of Agriculture.
- Chen, J. T. (1954b). Fishes of Taiwan. Bank of Taiwan. (In Chinese)
- Chen, J. T. (1969). A synopsis of the vertebrates of Taiwan. Commercial Press. (In Chinese)
- Chu, W. S., Hou, Y. Y., Ueng, Y. T., & Wang, J. P. (2012). Correlation Between the Length and Weight of Arius maculatus off the Southwestern Coast of Taiwan. Brazilian Archives of Biology and Technology, 55(5), 705–708. https://doi.org/10.1590/S1516-89132012000500009
- Chu, W. S., Hou, Y. Y., Ueng, Y. T., Wang, J. P., & Chen, H. C. (2011). Estimates of age, growth and mortality of spotted catfish, *Arius maculatus* (Thunberg, 1792), off the Coast of Yunlin. Southwestern Taiwan, *African Journal of Biotechnology*, 10(68), 15416–15421. http://dx.doi.org/10.5897/AJB11.1552
- Cuvier, G., & Valenciennes, A. (1840). *Histoire naturelle des poissons* (Vol. 15). Paris, Chez F. G. Levrault, Siluroïdes, *15*, 1–540. https://doi.org/10.5962/bhl.title.12283
- Ferraris, C. J. (2007). Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa, 1418(1), 1–628. https://doi.org/10.11646/zootaxa.1418.1.1
- Günther, A. C. L. G. (1864). *Catalogue of the fishes in the British Museum*. London, British Museum (Natural History). Department of Zoology, 1859–1868. https://doi.org/10.5962/bhl.title.8809

💩 🔬 🦛 🔬 😼

- Hou, G., Chen, W. T., Lu, H. S., Cheng, F., & Xie, S. G. (2018). Developing a DNA barcode library for perciform fishes in the South China Sea: Species identification, accuracy and cryptic diversity. *Molecular Ecology Resources*, 18(1), 137–146. https://doi.org/10.1111/1755-0998.12718
- Hsiao, P. Y., Wu, Y. L., Lan, K. W., & Lee, L. S. (2017). Seasonal variations of fishery resources structure of Trammel nets in the coastal water of Changyuen Rise, Taiwan. *Journal of The Fisheries Society of Taiwan*, 44(3), 171–183. https://doi.org/10.29822/JFST.201709_44(3).0004
- Huang, W. C., Evacitas, F. C., Balisco, R. A., Nañola Jr, C. L., Chou, T. K., Jhuang W. C., Chang, C. W., Shen, K. N., Shao, K. T., & Liao, T. Y. (2023). DNA barcoding of marine teleost fishes (Teleostei) in Cebu, the Philippines, a biodiversity hotspot of the coral triangle. *Scientific Reports*, *13*, 14867. https://doi.org/10.1038/s41598-023-41832-9
- Jayaram, K. C., & Dhanze, J. R. (1978). Siluroid fishes of India, Burma and Ceylon. 22. A preliminary review of the genera of the family Ariidae (Pisces: Siluroidea). *Matsya*, *4*, 42–51.
- Jayaram, K. C. (1977). Aid to the identification of the siluroid fishes of India, Burma, Sri Lanka, Pakistan, and Bangladesh. Calcutta: Director, Zoological Survey of India.
- Kailola, P. J. (1986). Ariidae systematics: comparison of the giant sea catfishes Arius thalassinus and A. bilineatus of the Indo-Pacific. In Uyeno T., Arai R., Taniuchi T. & Matsuura K. (Eds), Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes (pp. 540–549). Ichthyological Society of Japan, Tokyo.
- Kailola, P. J. (1999). The Living Marine Resources of the Western Central Pacific. In K.E. Carpenter and V.H. Niem (Eds.), FAO Species Identification Guide for Fishery Purpose (Vol. 3, pp. 1827–1879). FAO, Rome. http://www.fao.org/docrep/009/x2401e/x2401e00.htm
- Kailola, P. J. (2000). Six New Species of Fork-tailed Catfishes (Pisces, Teleostei, Ariidae) from Australia and New Guinea. *The Beagle: Records of the Museums and Art Galleries of the Northern Territory*, 16, 127– 144. https://doi.org/10.5962/p.254542
- Kailola, P. J. (2004). A Phylogenetic Exploration of the Catfish Family Ariidae (Otophysi: Siluriformes). The Beagle: Records of the Museums and Art Galleries of the Northern Territory, 20, 87–116. https://doi.org/10.5962/p.286323
- Kimura, S., Imamura, H., Van Quan, N., An., P., T., Biên, Đ., C., Quan Van, N., Và, Q., & Dương, P. T. (2019). *Fishes of Ha Long Bay.* Fisheries Research Laboratory, Mie University.
- Kimura, S., Satapoomin, U., & Matsuura, K. (2009). *Fishes of Andaman Sea: west coast of southern Thailand*. National Museum of Nature and Science.
- Koeda, K., & Ho, H. C. (2020). *Fishes of Southern Taiwan* (2nd ed., Vol. 1). National Marine Museum of Biology and Aquarium. (In Chinese)
- Kottelat, M. (2013). The Fishes of the Inland Waters of Southeast Asia: A Catalogue and Core Bibliography of the Fishes Known to Occur in Freshwaters, Mangroves and Estuaries. *Raffles Bulletin of Zoology*, 27, 1–663.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Molecular Biology and Evolution*, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

- Lee, S. C. (1992). Fish fauna and abundance of some dominant species in the estuary of Tanshui, northwestern Taiwan. *Journal of The Fisheries Society of Taiwan*, 19(4), 263–271. https://doi.org/10.29822/JFST.199212.0004
- Lin, C. H., & Chang, C. W. (2012). *Otolith Atlas of Taiwan Fishes*. National Museum of Marine Biology and Aquarium.
- Lin, C. H., & Chien, C. W. (2022). Late Miocene otoliths from northern Taiwan: insights into the rarely known Neogene coastal fish community of the subtropical northwest Pacific. *Historical Biology*, 34(2), 361–382. https://doi.org/10.1080/08912963.2021.1916012
- Lin, C. H., Wang, L. C., Wang, C. H., & Chang, C. W. (2018). Common early Pleistocene fish otoliths from Niubu in Chia-Yi County, southwestern Taiwan. *Journal of the National Taiwan Museum*, 71(3), 47–68. https://doi.org/10.6532/JNTM.201809_71(3).04
- Lin, C. H., Wang, Y. C., Ribas-Deulofeu, L., Chang, C. W., & Li, K. T. (2022). Changes in marine resource consumption over the past 5000 years in southwestern Taiwan revealed by fish otoliths. *Journal of Archaeological Science: Reports*, 42, 103400. https://doi.org/10.1016/j.jasrep.2022.103400
- Lin, S. Y. (2010). Sound Production of the Spotted Catfish (*Arius maculatus*) in Cigu lagoon, Tainan, Taiwan [Master's thesis, National Sun Yat-sen University]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/fxtmmg (In Chinese)
- Lo, K. C., Teng, S. Y., Wang, Y. C., Lee, M. A., Lin, J. L., Lu, T. H., & Huang, I. L. (2017). Resource structure of an artisanal gillnet fishery in the coastal waters of Tamsui, Taiwan. *Journal of The Fisheries Society of Taiwan*, 44(3), 147–157. https://doi.org/10.29822/JFST.201709_44(3).0002
- Malabarba, L. R., & Malabarba, M. C. (2020). Phylogeny and classification of Neotropical fish. In B. Baldisserotto, E. C. Urbinati, & J. E. P. Cyrino (Eds.), *Biology and Physiology of Freshwater Neotropical Fish* (pp. 1–19). Academic Press. https://doi.org/10.1016/B978-0-12-815872-2.00001-4
- Marceniuk A. P., & Menezes, N. A. (2007). Systematics of the family Ariidae (Ostariophysi, Siluriformes), with a redefinition of the genera. *Zootaxa*, *1416*, 1–126. https://doi.org/10.11646/zootaxa.1416.1.1
- Marceniuk, A. P., Bogorodsky, S. V., Mal, A. O., & Alpermann, T. J. (2017). Redescription of the blacktip sea catfish *Plicofollis dussumieri* (Valenciennes) (Siluriformes: Ariidae), with a new record from the Red Sea and notes on the diversity and distribution of *Plicofollis* spp. *Marine Biodiversity*, 47, 1239–1250. https://doi.org/10.1007/s12526-017-0760-x
- Marceniuk, A. P., Menezes, N. A., & Britto, M. R. (2012). Phylogenetic analysis of the family Ariidae (Ostariophysi: Siluriformes), with a hypothesis on the monophyly and relationships of the genera. *Zoological Journal of the Linnean Society*, 165(3), 534–669. https://doi.org/10.1111/j.1096-3642.2012.00822.x
- Marceniuk, A. P., Oliveira, C., & Ferraris Jr, C. J. (2024). A new classification of the family Ariidae (Osteichtyes: Ostariophysi: Siluriformes) based on combined analyses of morphological and molecular data. *Zoological Journal of the Linnean Society*, 200(2), 426–476. https://doi.org/10.1093/zoolinnean/zlad078

Murray, A. M., & Holmes, R. (2022). Osteology of the cranium and Weberian apparatus of African catfish families (Teleostei: Ostariophysi: Siluriformes) with an assessment of Palaeogene genera. Vertebrate Anatomy Morphology Palaeontology, 9(1), 156–191. https://doi.org/10.18435/vamp29382

Nakabo, T. (2013). Fishes of Japan with Pictorial Keys to the Species (3rd ed.). Tokai University Press.

- Nasihin-Seth, S., Kawamura, G., Nazia, A. K., & Manjaji-Matsumoto, B. M. (2019). DNA barcoding of common catfish in Malaysia. *Aquaculture, Aquarium, Conservation & Legislation, 12*(6), 2212–2220.
- Ng, H. H. (2003). Arius verrucosus, a new species of freshwater ariid catfish (Teleostei: Ariidae) from the Mekong River. Occasional papers of the Museum of Zoology the University of Michigan, 734, 1-14.

Ng, H. H. (2012). The Ariid catfishes of Singapore. Nature in Singapore, 5, 211-222.

- Nolf, D. (1985). Otolithi Piscium. In H.P. Schultze (Ed.), *Handbook of Palaeoichthyology* (Vol. 10, pp. 1–145). Gustav Fischer Verlag.
- Ohe, F. (2000). Otoliths of three species belonging to family Ariidae from East China Sea. *Kaseki No Tomo*, 47, 35–42. (In Japanese)
- Ohe, F. (2006). Skulls and otoliths of eleven sea catfishes (Family Ariidae) from Malaysia and one species related to them from the East China Sea. *The Natural Environmental Science Research*, *19*, 11–28. https://doi.org/10.32280/nesr.19.0_11 (In Japanese)
- Palandačić, A., Diripasko O. A., Kirchner, S., Stefanov, T., & Bogutskaya N. G. (2024). An integrative approach highlights the discrepancy in the genetic, phenotypic, and presumptive taxonomic structure of *Phoxinus* (Actinopterygii, Leuciscidae, Phoxininae) in Bulgaria. *Journal of Fish Biology*, 105(1), 214–238. https://doi.org/10.1111/jfb.15765
- Pan, C. W., Chen, M. H., Chou, L. S., & Lin, H. J. (2016). The Trophic Significance of the Indo-Pacific Humpback Dolphin, *Sousa chinensis*, in Western Taiwan. *PLoS ONE*, 11(10), e0165283. https://doi.org/10.1371/journal.pone.0165283
- Psomadakis, P. N., Osmany, H. B., & Moazzam, M. (2015). Field identification guide to the living marine resources of Pakistan. FAO (pp. 163-167). https://openknowledge.fao.org/handle/20.500.14283/i4932e
- Psomadakis, P. N., Thein, H., Russell, B. C., & Tun, M. T. (2019). *Field identification guide to the living marine resources of Myanmar.* FAO and MOALI (pp. 306-311).

https://openknowledge.fao.org/items/1109bcd6-c6a5-434e-b2f9-d171d0df5aa4

- Quilang, J. P., & Yu, S. C. S. (2015). DNA barcoding of commercially important catfishes in the Philippines. *Mitochondrial DNA*, 26(3), 435–444. https://doi.org/10.3109/19401736.2013.855897
- Randall, J. E., & Lim, K. K. P. (2000). A Checklist of the Fishes of the South China Sea. *The Raffles Bulletin of Zoology*, 8, 569–667.
- Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N., & Delsuc, F. (2018). MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. *Molecular Biology and Evolution*, 35(10), 2582–2584. https://doi.org/10.1093/molbev/msy159
- Santos, B. S., & Quilang, J. P. (2011). DNA Barcoding of Arius Species (Siluriformes: Ariidae) in Laguna de Bay, Philippines Using the Cytochrome C Oxidase Subunit 1 Gene. *Philippine Agricultural Scientist*, 94(2), 205–210.

Shao, K. T. (2024). Taiwan Fish Database. http://fishdb.sinica.edu.tw (Nov. 2024).

- Shen, S. C., & Wu, K.-Y. (2011) *Fishes of Taiwan*. National Museum of Marine Biology & Aquarium. (In Chinese)
- Shen, S. C. (1984). Synopsis of Fishes of Taiwan. Southern Materials Center Inc. (In Chinese)
- Shen, S. C., Lee, S. C., Shao, K. T., MoK, H. K., Chen, C. T., & Chen, C. H. (1993). *Fishes of Taiwan*. Department of Zoology, National Taiwan University. (In Chinese)
- Sonoyama, T., Ogimoto, K., Hori, S., Uchida, Y., & Kawano, M. (2020). An annotated checklist of marine fishes of the Sea of Japan off Yamaguchi Prefecture, Japan, with 74 new records. *Bulletin of the Kagoshima University Museum*, *11*, 1–152.
- Su, N. J., Lu, Y. S., Cheng, C. Y., Huang, L. C., & Li, C. H. (2017). Investigation on fishing activity and catch composition of coastal gillnet fisheries in waters off northwestern Taiwan. *Journal of The Fisheries Society* of Taiwan, 44(3), 159–169. https://doi.org/10.29822/JFST.201709_44(3).0003
- Takahashi, Y., Kimura, S., & Motomrua, H. (2019). A new sea catfish, *Netuma patriciae* (Siluriformes: Ariidae), from the Philippines. *Ichthyological Research*, 67(2), 264–273. https://doi.org/10.1007/s10228-019-00721-w
- Thu, P. T., Huang W. C., Chou, T. K., Van Quan, N., Van Chien, P., Li, F., Shao, K. T., & Liao, T. Y. (2019). DNA barcoding of coastal ray-finned fishes in Vietnam. *PLoS ONE*, 14(9), e0222631. https://doi.org/10.1371/journal.pone.0222631
- Thunberg, C. P. (1792). Tvånne Japanske fiskar. Kongliga Vetenskaps-Academiens Handlingar. *Stockholm, L.L. Grefing, 13*, 1–324.
- Tzeng, W. N., & Wang, Y. T. (1997). Movement of Fish Larvae with Tidal Flux in the Tanshui River Estuary, Northern Taiwan. *Zoological Studies*, *36*(3), 178–185.
- Xiao, J., Lyu, S., Iqbal, T. H., Hajisamae, S., Tsim, K. W. K., & Wang, W. X. (2022). Molecular phylogenetic and morphometric analysis of population structure and demography of endangered threadfin fish *Eleutheronema* from Indo-Pacific waters. *Scientific Reports*, 12, 3455. https://doi.org/10.1038/s41598-022-07342-w
- Yu, S. C. S., & Quilang, J. P. (2014). Molecular Phylogeny of Catfishes (Teleostei: Siluriformes) in the Philippines Using the Mitochondrial Genes COI, Cyt b, 16S rRNA, and the Nuclear Genes Rag1 and Rag2. *Philippine Journal of Science*, 143(2), 187–198.

104

Appendix

Appendix 1. Fresh specimens of Ariidae from Taiwan.

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
CHLOL2007	Arius maculatus	277.8	366	2020/8/21	WQ
CHLOL21677	Arius maculatus	273.87	352	2020/8/21	WQ
CHLOL1318	Arius maculatus	251.08	302	2020/8/21	WQ
CHLOL1319	Arius maculatus	261.46	296	2020/8/21	WQ
CHLOL1320	Arius maculatus	246.13	280	2020/8/21	WQ
CHLOL1321	Arius maculatus	238.59	240	2020/8/21	WQ
CHLOL1322	Arius maculatus	245.51	210	2020/8/21	WQ
CHLOL1323	Arius maculatus	300.29	388	2020/8/21	WQ
CHLOL21679	Arius maculatus	337.33	672	2021/10/31	WZ
ASIZP0081571	Arius maculatus	317.44	584	2021/10/31	WZ
CHLOL21686	Arius maculatus	321.48	534	2020/10/23	WQ
CHLOL21687	Arius maculatus	320.86	522	2020/10/23	WQ
CHLOL21689	Arius maculatus	281.27	428	2020/10/23	WQ
CHLOL21694	Arius maculatus	270.03	364	2020/11/25	WQ
CHLOL21696	Arius maculatus	265.67	316	2021/2/27	WZ
CHLOL21697	Arius maculatus	251.61	340	2021/2/27	WZ
CHLOL21698	Arius maculatus	257.74	336	2021/2/27	WZ
CHLOL21699	Arius maculatus	250.44	300	2021/2/27	WZ
CHLOL21701	Arius maculatus	252.74	302	2021/2/27	WZ
CHLOL21702	Arius maculatus	257.12	364	2021/2/27	WZ
CHLOL21703	Arius maculatus	264.64	380	2021/2/27	WZ
CHLOL21704	Arius maculatus	296.1	508	2021/2/27	WZ
CHLOL21705	Arius maculatus	277.87	458	2021/2/27	WZ
CHLOL21706	Arius maculatus	305.41	600	2021/2/27	WZ
CHLOL21707	Arius maculatus	356.43	1,124	2021/2/27	WZ
CHLOL21708	Arius maculatus	285.92	520	2021/2/27	WZ
CHLOL21710	Arius maculatus	251.23	338	2021/1/17	DX
CHLOL21711	Arius maculatus	123.79	30	2020/9/25	DS
CHLOL21717	Arius maculatus	245.97	294	2021/5/5	LF
CHLOL21718	Arius maculatus	224.8	270	2021/5/5	LF
CHLOL21719	Arius maculatus	218.35	246	2021/5/5	LF
CHLOL21720	Arius maculatus	309.65	676	2021/3/28	WZ
CHLOL21721	Arius maculatus	297.93	616	2021/3/28	WZ
CHLOL21722	Arius maculatus	285.12	488	2021/3/28	WZ

....

105

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
CHLOL21723	Arius maculatus	284.85	520	2021/3/28	WZ
CHLOL21724	Arius maculatus	269.72	444	2021/3/28	WZ
CHLOL21725	Arius maculatus	257.46	384	2021/3/28	WZ
CHLOL21726	Arius maculatus	268.04	398	2021/3/28	WZ
CHLOL21727	Arius maculatus	270.07	370	2021/3/28	WZ
CHLOL21728	Arius maculatus	248.76	380	2021/3/28	WZ
CHLOL21730	Arius maculatus	239.42	290	2021/3/28	WZ
CHLOL21731	Arius maculatus	260.89	386	2021/3/28	WZ
CHLOL21732	Arius maculatus	266.74	380	2021/3/28	WZ
CHLOL21733	Arius maculatus	265.34	390	2021/3/28	WZ
CHLOL21734	Arius maculatus	266.21	352	2021/3/28	WZ
ASIZP0081572	Arius maculatus	259.82	382	2021/3/28	WZ
CHLOL21735	Arius maculatus	277.38	508	2021/3/28	WZ
CHLOL21736	Arius maculatus	281.8	492	2021/3/28	WZ
CHLOL21737	Arius maculatus	286.49	518	2021/3/28	WZ
CHLOL21738	Arius maculatus	290.91	496	2021/3/28	WZ
CHLOL21739	Arius maculatus	252.93	318	2021/3/28	WZ
CHLOL21740	Arius maculatus	249.46	314	2021/3/28	WZ
CHLOL21741	Arius maculatus	254.56	316	2021/3/28	WZ
CHLOL21742	Arius maculatus	267	342	2021/3/28	WZ
CHLOL21743	Arius maculatus	247.45	316	2021/3/28	WZ
ASIZP0081573	Arius maculatus	248.77	324	2021/3/28	WZ
CHLOL21744	Arius maculatus	259.02	370	2021/3/28	WZ
CHLOL21745	Arius maculatus	270.51	370	2021/3/28	WZ
CHLOL21746	Arius maculatus	269.7	416	2021/3/28	WZ
CHLOL21747	Arius maculatus	284.79	502	2021/3/28	WZ
CHLOL21748	Arius maculatus	285.23	424	2021/3/28	WZ
CHLOL21749	Arius maculatus	265.13	320	2020/9/19	WZ
CHLOL21750	Arius maculatus	290.21	368	2020/9/19	WZ
CHLOL21751	Arius maculatus	255.41	312	2020/9/19	WZ
CHLOL21752	Arius maculatus	254.03	304	2020/9/19	WZ
CHLOL21753	Arius maculatus	258.9	304	2020/9/19	WZ
CHLOL21755	Arius maculatus	269.95	390	2020/9/19	WZ
CHLOL21756	Arius maculatus	268.4	410	2020/9/19	WZ
CHLOL21757	Arius maculatus	276.53	396	2020/9/19	WZ
CHLOL21758	Arius maculatus	308.3	582	2020/9/19	WZ
CHLOL21760	Arius maculatus	258.33	306	2021/3/28	WZ

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
CHLOL21761	Arius maculatus	259.02	320	2021/3/28	WZ
CHLOL21762	Arius maculatus	267.61	402	2021/3/28	WZ
CHLOL21763	Arius maculatus	265.86	398	2021/3/28	WZ
CHLOL21764	Arius maculatus	288.72	550	2021/3/28	WZ
CHLOL21765	Arius maculatus	302.88	490	2021/3/28	WZ
CHLOL21766	Arius maculatus	305.81	632	2021/3/28	WZ
CHLOL21767	Arius maculatus	305.78	656	2021/3/28	WZ
CHLOL21768	Arius maculatus	255.11	294	2021/3/6	DS
CHLOL21769	Arius maculatus	263.63	406	2021/3/6	DS
CHLOL21770	Arius maculatus	285.36	622	2021/3/6	DS
CHLOL21771	Arius maculatus	308.22	594	2021/3/6	DS
CHLOL21772	Arius maculatus	341.22	856	2021/3/6	DS
NTMP1732	Arius maculatus	247.14	270	2021/4/29	Keelung
NTMP1733	Arius maculatus	289.69	568	2021/4/13	JG
NMMBP37239	Arius maculatus	303.06	564	2021/4/13	JG
NTMP1734	Arius maculatus	305.2	614	2021/4/13	JG
NMMBP37231	Arius maculatus	307.7	608	2021/4/13	JG
ASIZP0081575	Arius maculatus	358.83	872	2021/4/13	JG
NMMBP37232	Arius maculatus	357.31	1,018	2021/4/13	JG
NMMBP37233	Arius maculatus	361.34	1,088	2021/4/13	JG
NTMP1735	Arius maculatus	293.9	484	2021/7/12	TS
NTMP1736	Arius maculatus	265.3	356	2021/7/9	ZW
NMMBP37226	Arius maculatus	255.47	312	2021/7/1	LPP
CHLOL21777	Arius maculatus	260.45	330	2021/7/1	LPP
NTMP1737	Arius maculatus	235.98	188	2021/7/1	LPP
CHLOL21778	Arius maculatus	213.06	154	2021/7/1	LPP
CHLOL21779	Arius maculatus	192.18	122	2021/7/1	LPP
NMMBP37234	Arius maculatus	382.27	1,080	2021/7/23	JG
NMMBP37235	Arius maculatus	359.02	868	2021/7/23	JG
NMMBP37236	Arius maculatus	346.73	730	2021/7/23	JG
NMMBP37244	Arius maculatus	320.37	616	2021/7/23	JG
NMMBP37243	Arius maculatus	310.51	596	2021/7/23	JG
ASIZP0081576	Arius maculatus	308.7	518	2021/7/23	JG
ASIZP0081580	Arius maculatus	303.63	638	2021/8/15	DS
ASIZP0081581	Arius maculatus	265.49	416	2021/8/15	DS
NTMP1738	Arius maculatus	282.54	444	2021/8/29	DS
ASIZP0081582	Arius maculatus	248.81	314	2021/8/29	DS

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site	
NTMP1739	Arius maculatus	253.91	234	2021/8/29	DS	
NTMP1740	Arius maculatus	237.55	238	2021/8/29	DS	
NTMP1741	Arius maculatus	246.44	296	2021/9/24	WZ	
NMMBP37219	Arius maculatus	319.49	614	2021/9/24	WZ	
CHLOL21790	Arius maculatus	119.05	30	2022/12/10	MZ	
CHLOL21791	Arius maculatus	111.93	24	2022/12/10	MZ	
ASIZP0081589	Arius maculatus	112.15	22	2022/12/10	MZ	
CHLOL21792	Arius maculatus	101.56	16	2022/12/10	MZ	
NMMBP37220	Arius maculatus	237.72	292	2021/8/6	WZ	
NMMBP37229	Arius maculatus	260.21	368	2021/8/6	WZ	
NMMBP37228	Arius maculatus	253.62	326	2021/8/6	WZ	
NMMBP37227	Arius maculatus	262.41	306	2021/8/6	WZ	
NTMP1742	Arius maculatus	265.15	378	2021/8/6	WZ	
CHLOL21795	Arius maculatus	185.95	98	2021/12/8	LPP	
NMMBP37238	Arius maculatus	252.84	250	2021/12/8	LPP	
NMMBP37237	Arius maculatus	330.24	798	2021/11/12	DS	
NMMBP37241	Arius maculatus	283.93	452	2021/11/12	DS	
NMMBP37242	Arius maculatus	257.13	332	2021/11/12	DS	
NMMBP37240	Arius maculatus	266.23	400	2021/9/24	WZ	
NTMP1743	Arius maculatus	282.09	386	2021/9/24	WZ	
NMMBP37230	Arius maculatus	269.25	476	2021/8/6	WZ	
NMMBP37224	Arius maculatus	283.92	468	2021/8/6	WZ	
NMMBP37225	Arius maculatus	277.15	416	2021/8/6	WZ	
NMMBP37247	Arius maculatus	276.99	402	2021/8/6	WZ	
NMMBP37245	Arius maculatus	261.52	354	2021/8/6	WZ	
NTMP1744	Arius maculatus	254.31	274	2021/8/6	WZ	
NTMP1745	Arius maculatus	284.01	406	2021/8/6	WZ	
NTMP1746	Arius maculatus	264.65	410	2021/8/6	WZ	
NTMP1747	Arius maculatus	280.06	372	2021/8/6	WZ	
NTMP1748	Arius maculatus	309.33	588	2021/8/6	WZ	
CHLOL21797	Arius maculatus	277.14	406	2021/8/6	WZ	
CHLOL21798	Arius maculatus	275.37	424	2021/8/6	WZ	
CHLOL21799	Arius maculatus	273.85	460	2021/8/6	WZ	
CHLOL21800	Arius maculatus	255.72	540	2021/8/6	WZ	
CHLOL21801	Arius maculatus	260.88	576	2021/8/6	WZ	
CHLOL21802	Arius maculatus	278.37	638	2021/8/6	WZ	
CHLOL21803	Arius maculatus	295.83	688	2021/8/6	WZ	

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
CHLOL21804	Arius maculatus	237.56	492	2021/8/6	WZ
CHLOL21805	Arius maculatus	263.93	564	2021/8/6	WZ
CHLOL21806	Arius maculatus	275.26	600	2021/8/6	WZ
CHLOL21807	Arius maculatus	283.7	580	2021/8/6	WZ
CHLOL21808	Arius maculatus	276.89	662	2021/8/6	WZ
CHLOL21809	Arius maculatus	263.92	602	2021/10/28	BO
CHLOL21810	Arius maculatus	281.38	730	2021/10/28	BO
NMMBP37246	Arius maculatus	279.7	372	2021/9/24	WZ
NMMBP37222	Arius maculatus	271.99	396	2021/9/24	WZ
NMMBP37223	Arius maculatus	262.09	360	2021/9/24	WZ
NMMBP37221	Arius maculatus	269.56	384	2021/9/24	WZ
CHLOL21818	Arius maculatus	97.84	14	2022/12/10	MZ
CHLOL21819	Arius maculatus	92.95	14	2022/12/10	MZ
CHLOL1324	Netuma bilineata	307.85	530	2020/8/21	WQ
CHLOL1325	Netuma bilineata	301.53	470	2020/8/21	WQ
ASIZP0081570	Netuma bilineata	299.8	466	2020/8/21	WQ
CHLOL1327	Netuma bilineata	291.18	454	2020/8/21	WQ
CHLOL1328	Netuma bilineata	296	430	2020/8/21	WQ
CHLOL1388	Netuma bilineata	237.85	302	2020/9/5	CS
CHLOL1389	Netuma bilineata	233.14	252	2020/9/5	CS
CHLOL2008	Netuma bilineata	212.56	230	2020/9/5	CS
CHLOL21681	Netuma bilineata	221.85	234	2020/9/19	WZ
CHLOL21682	Netuma bilineata	215.6	224	2020/9/19	WZ
CHLOL21683	Netuma bilineata	212.07	202	2020/9/19	WZ
CHLOL21684	Netuma bilineata	213.03	204	2020/9/19	WZ
CHLOL21700	Netuma bilineata	344.37	814	2020/11/19	BO
CHLOL21709	Netuma bilineata	268.92	376	2021/1/14	BO
CHLOL21754	Netuma bilineata	221.3	236	2020/9/19	WZ
NTMP1749	Netuma bilineata	306.37	678	2021/7/12	TS
NTMP1750	Netuma bilineata	273.1	428	2021/7/12	TS
NTMP1751	Netuma bilineata	272.25	468	2021/7/12	TS
NTMP1752	Netuma bilineata	368.51	1,078	2021/7/12	TS
NTMP1753	Netuma bilineata	263.51	398	2021/7/12	TS
NTMP1754	Netuma bilineata	366.31	1,128	2021/7/12	TS
NTMP1755	Netuma bilineata	370.58	1,068	2021/7/12	TS
NMMBP37263	Netuma bilineata	313.47	854	2021/7/12	TS
NMMBP37264	Netuma bilineata	313.65	768	2021/7/12	TS

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
CHLOL21780	Netuma bilineata	187.84	152	2021/8/7	WZ
CHLOL21781	Netuma bilineata	208.54	212	2021/8/7	WZ
ASIZP0081577	Netuma bilineata	196.18	170	2021/8/7	WZ
ASIZP0081578	Netuma bilineata	195.09	178	2021/8/7	WZ
ASIZP0081579	Netuma bilineata	193.36	178	2021/8/7	WZ
CHLOL21782	Netuma bilineata	198.01	184	2021/8/7	WZ
CHLOL21783	Netuma bilineata	187.33	174	2021/8/7	WZ
CHLOL21784	Netuma bilineata	200.64	184	2021/8/7	WZ
CHLOL21785	Netuma bilineata	216.31	260	2021/8/7	WZ
CHLOL21786	Netuma bilineata	205.9	232	2021/8/7	WZ
NTMP1756	Netuma bilineata	284.78	244	2021/9/24	WZ
NMMBP37276	Netuma bilineata	302.99	524	2021/9/9	LF
NMMBP37278	Netuma bilineata	302.47	564	2021/9/9	LF
NMMBP37275	Netuma bilineata	276.96	448	2021/9/9	LF
NMMBP37277	Netuma bilineata	335.39	710	2021/9/9	LF
ASIZP0081583	Netuma bilineata	326.26	700	2021/9/9	LF
ASIZP0081584	Netuma bilineata	277.73	414	2021/9/9	LF
ASIZP0081585	Netuma bilineata	302.73	580	2021/9/9	LF
ASIZP0081586	Netuma bilineata	296.29	562	2021/9/9	LF
CHLOL21787	Netuma bilineata	327.42	864	2021/8/3	LF
CHLOL21788	Netuma bilineata	66.73	5.331	2021/8/3	LF
CHLOL21789	Netuma bilineata	337.32	764	2021/8/3	LF
ASIZP0081587	Netuma bilineata	369.69	1,124	2021/8/3	LF
ASIZP0081588	Netuma bilineata	344.15	874	2021/8/3	LF
NTMP1757	Netuma bilineata	200.16	200	2021/10/6	WZ
NTMP1758	Netuma bilineata	191.66	158	2021/10/6	WZ
NTMP1759	Netuma bilineata	217.66	228	2021/10/6	WZ
NTMP1760	Netuma bilineata	222.37	250	2021/10/6	WZ
NTMP1761	Netuma bilineata	198.16	176	2021/10/6	WZ
NTMP1762	Netuma bilineata	205.18	190	2021/10/6	WZ
NTMP1763	Netuma bilineata	198.78	218	2021/10/6	WZ
NTMP1764	Netuma bilineata	201.88	184	2021/10/6	WZ
NTMP1765	Netuma bilineata	205.31	206	2021/10/6	WZ
NTMP1766	Netuma bilineata	221.71	262	2021/10/6	WZ
NMMBP37257	Netuma bilineata	205	204	2021/10/6	WZ
NMMBP37262	Netuma bilineata	196.08	184	2021/10/6	WZ
NMMBP37261	Netuma bilineata	224.7	276	2021/10/6	WZ

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
NMMBP37256	Netuma bilineata	204.56	210	2021/10/6	WZ
NMMBP37260	Netuma bilineata	210.69	226	2021/10/6	WZ
NMMBP37255	Netuma bilineata	203.13	204	2021/9/24	WZ
ASIZP0081592	Netuma bilineata	182.16	126	2021/9/24	WZ
NMMBP37250	Netuma bilineata	212.8	226	2021/9/24	WZ
NMMBP37258	Netuma bilineata	200.98	176	2021/9/24	WZ
NMMBP37259	Netuma bilineata	208.13	185	2021/9/24	WZ
NMMBP37269	Netuma bilineata	190.28	140	2021/9/24	WZ
NMMBP37251	Netuma bilineata	211.18	207	2021/9/24	WZ
CHLOL21794	Netuma bilineata	218.94	231	2021/9/24	WZ
ASIZP0081593	Netuma bilineata	211.05	207	2021/9/24	WZ
NMMBP37254	Netuma bilineata	305.99	544	2021/8/3	LF
NMMBP37253	Netuma bilineata	306.14	530	2021/8/3	LF
NMMBP37274	Netuma bilineata	328.04	646	2021/8/3	LF
NMMBP37273	Netuma bilineata	345.28	778	2021/8/3	LF
NMMBP37252	Netuma bilineata	203.2	160	2021/9/24	WZ
NMMBP37249	Netuma bilineata	215.64	218	2021/9/24	WZ
NMMBP37271	Netuma bilineata	203.92	186	2021/9/24	WZ
NMMBP37272	Netuma bilineata	203.63	162	2021/9/24	WZ
NMMBP37270	Netuma bilineata	205.57	190	2021/9/24	WZ
NMMBP37267	Netuma bilineata	197.72	166	2021/9/24	WZ
NMMBP37266	Netuma bilineata	200.61	192	2021/9/24	WZ
NMMBP37265	Netuma bilineata	194.46	144	2021/9/24	WZ
NMMBP37268	Netuma bilineata	183.33	132	2021/9/24	WZ
CHLOL1316	Plicofollis nella	268.88	460	2020/9/5	CS
CHLOL1317	Plicofollis nella	257.72	416	2020/9/5	CS
CHLOL1326	Plicofollis nella	265.95	410	2020/9/5	CS
CHLOL1383	Plicofollis nella	263.09	374	2020/9/5	CS
CHLOL1384	Plicofollis nella	252.3	350	2020/9/5	CS
CHLOL1390	Plicofollis nella	239.33	344	2020/9/5	CS
CHLOL1385	Plicofollis nella	236.08	302	2020/9/5	CS
CHLOL1386	Plicofollis nella	235.07	286	2020/9/5	CS
CHLOL21678	Plicofollis nella	231.78	274	2020/9/5	CS
CHLOL1387	Plicofollis nella	236.51	272	2020/9/5	CS
CHLOL5782	Plicofollis nella	680	6,126	2021/1/13	LF
CHLOL5783	Plicofollis nella	620	4,728	2021/1/13	LF
CHLOL5866	Plicofollis nella	545	3,718	2021/1/13	LF

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
CHLOL21680	Plicofollis nella	370.04	1,056	2021/1/13	LF
CHLOL21685	Plicofollis nella	352.13	842	2020/10/23	WQ
CHLOL21688	Plicofollis nella	313.48	608	2020/10/23	WQ
CHLOL21690	Plicofollis nella	433.58	1,564	2020/10/11	ZW
CHLOL21691	Plicofollis nella	389.7	1,312	2020/10/11	ZW
CHLOL21692	Plicofollis nella	354.96	908	2020/10/11	ZW
CHLOL21693	Plicofollis nella	340.3	882	2020/10/11	ZW
CHLOL21695	Plicofollis nella	387.58	1,244	2021/6/29	WQ
NTMP1767	Plicofollis nella	544.69	2,730	2021/6/29	WQ
CHLOL21712	Plicofollis nella	136.72	46	2021/10/28	Keelung
CHLOL21713	Plicofollis nella	357.89	904	2020/11/25	WQ
CHLOL21714	Plicofollis nella	304.51	640	2020/11/25	WQ
CHLOL21715	Plicofollis nella	303.65	578	2020/11/25	WQ
CHLOL21716	Plicofollis nella	303.79	622	2020/11/25	WQ
CHLOL5784	Plicofollis nella	585	4,196	2021/1/13	LF
CHLOL5785	Plicofollis nella	550	3,142	2021/1/13	LF
CHLOL5786	Plicofollis nella	435	1,544	2021/1/13	LF
CHLOL5860	Plicofollis nella	635	4,938	2021/1/13	LF
CHLOL5861	Plicofollis nella	557	3,450	2021/1/13	LF
CHLOL5862	Plicofollis nella	535	3,172	2021/1/13	LF
CHLOL5863	Plicofollis nella	555	3,340	2021/1/13	LF
CHLOL5864	Plicofollis nella	451.2	1,974	2021/1/13	LF
CHLOL5865	Plicofollis nella	382.51	1,066	2021/1/13	LF
CHLOL21729	Plicofollis nella	344.88	852	2021/3/28	WZ
CHLOL21759	Plicofollis nella	239.65	316	2021/3/28	WZ
NMMBP37301	Plicofollis nella	272.03	426	2021/3/6	DS
NMMBP37303	Plicofollis nella	275.77	408	2021/3/6	DS
NMMBP37302	Plicofollis nella	290.66	524	2021/3/6	DS
NMMBP37300	Plicofollis nella	278.93	462	2021/3/6	DS
CHLOL21773	Plicofollis nella	389.81	1,442	2020/12/18	WQ
CHLOL21774	Plicofollis nella	375.5	1,356	2020/12/18	WQ
CHLOL21775	Plicofollis nella	324.38	752	2020/12/18	WQ
CHLOL21776	Plicofollis nella	331.9	858	2020/12/18	WQ
ASIZP0081574	Plicofollis nella	309.81	694	2020/12/18	WQ
NMMBP37285	Plicofollis nella	306.21	624	2020/12/18	WQ
NTMP1768	Plicofollis nella	359.81	1,144	2021/7/9	ZW
NTMP1769	Plicofollis nella	484.71	2,410	2021/7/17	Keelung

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
NTMP1770	Plicofollis nella	449.91	1,802	2021/7/23	JG
NTMP1771	Plicofollis nella	433.94	1,622	2021/7/23	JG
NTMP1772	Plicofollis nella	399.86	1,346	2021/7/23	JG
NMMBP37289	Plicofollis nella	275.44	522	2021/8/7	WZ
NMMBP37290	Plicofollis nella	285.94	614	2021/8/7	WZ
NMMBP37288	Plicofollis nella	278.35	574	2021/8/7	WZ
NMMBP37287	Plicofollis nella	304.71	662	2021/8/7	WZ
NMMBP37286	Plicofollis nella	300.38	584	2021/8/7	WZ
NMMBP37308	Plicofollis nella	382.22	1,262	2021/8/10	LF
NMMBP37307	Plicofollis nella	406.16	1,392	2021/8/10	LF
NMMBP37306	Plicofollis nella	408.02	1,472	2021/8/10	LF
NMMBP37305	Plicofollis nella	380.81	1,190	2021/8/10	LF
NMMBP37304	Plicofollis nella	383.85	1,220	2021/8/10	LF
NTMP1773	Plicofollis nella	409.99	1,472	2021/8/10	LF
NMMBP37279	Plicofollis nella	317.74	770	2021/8/29	DS
NTMP1774	Plicofollis nella	267.1	454	2021/8/29	DS
NTMP1775	Plicofollis nella	310.35	628	2021/9/24	WZ
NMMBP37293	Plicofollis nella	249.66	342	2021/10/6	WZ
NMMBP37294	Plicofollis nella	254.31	382	2021/10/6	WZ
ASIZP0081590	Plicofollis nella	274.64	448	2021/10/6	WZ
NMMBP37292	Plicofollis nella	241.77	312	2021/10/6	WZ
NMMBP37291	Plicofollis nella	255.71	336	2021/10/6	WZ
NMMBP37299	Plicofollis nella	254.59	366	2021/10/6	WZ
NMMBP37298	Plicofollis nella	271.99	442	2021/10/6	WZ
NMMBP37297	Plicofollis nella	246.44	336	2021/10/6	WZ
NMMBP37296	Plicofollis nella	318.05	808	2021/10/6	WZ
NMMBP37295	Plicofollis nella	293.38	656	2021/10/6	WZ
NMMBP37280	Plicofollis nella	246.84	330	2021/10/6	WZ
NMMBP37282	Plicofollis nella	247.12	334	2021/10/6	WZ
NTMP1776	Plicofollis nella	262.8	408	2021/10/6	WZ
CHLOL21793	Plicofollis nella	303.12	706	2021/10/6	WZ
ASIZP0081591	Plicofollis nella	341.27	964	2021/10/6	WZ
NMMBP37284	Plicofollis nella	285.51	518	2021/8/3	LF
NMMBP37283	Plicofollis nella	296.1	558	2021/8/3	LF
CHLOL21796	Plicofollis nella	460	1,980	2021/12/8	LPP
NMMBP-37281	Plicofollis nella	323.38	354	2021/9/24	WZ
CHLOL21811	Plicofollis nella	450	1,574	2021/9/9	LF

Specimen number	Species	SL (mm)	Weight (g)	Date	Sampling site
CHLOL21812	Plicofollis nella	440	1,726	2021/9/9	LF
CHLOL21813	Plicofollis nella	500	2,344	2021/9/9	LF
ASIZP0081594	Plicofollis nella	580	3,684	2021/9/9	LF
CHLOL21814	Plicofollis nella	600	3,908	2021/8/10	LF
CHLOL21815	Plicofollis nella	485	2,088	2021/8/10	LF
CHLOL21816	Plicofollis nella	435	1,376	2021/8/10	LF
CHLOL21817	Plicofollis nella	440	1,700	2021/8/10	LF

Specimen	Previous name in the	This paper	SL (mm)	Sampling	Sampling	
number	collection			date	site	
ASIZP0058007A	Netuma thalassina	Netuma bilineata	132.33	1990/5/1	WQ	
ASIZP0058007B	Netuma thalassina	Netuma bilineata	171.39	1995/5/1	WQ	
ASIZP0058069	Arius arius	Arius maculatus	154.83	1991/6/12	TX	
ASIZP0058255	Plicofollis	Plicofollis nella	134.87	1996/11/16	DX	
	polystaphylodon					
ASIZP0059778	Arius sp.	Arius maculatus	58.28	1998/8/25	ZW	
ASIZP0061713	Arius leiotetocephalus	Plicofollis nella	296.7	2002/6/6	Miaoli	
ASIZP0061714	Arius maculatus	Arius maculatus	190.52	2002/6/6	Miaoli	
ASIZP0061971	Netuma thalassina	Netuma bilineata	140.25	2002/9/3	Miaoli	
ASIZP0062884	Arius leiotetocephalus	Plicofollis nella	288.19	2002/7/6	Miaoli	
ASIZP0063525	Netuma thalassina	Netuma bilineata	125.88	2000/6/23	TS	
ASIZP0063526	Plicofollis nella	Plicofollis nella	144.67	2000/6/23	BL	
ASIZP0063527	Arius maculatus	Arius maculatus	138.56	2000/6/23	BL	
ASIZP0063599	Plicofollis nella	Plicofollis nella	215.55	1999/4/8	BL	
ASIZP0064248	Arius leiotetocephalus	Plicofollis nella	206.11	2004/7/29	LPP	
ASIZP0064249	Arius leiotetocephalus	Plicofollis nella	179.62	2004/7/29	BL	
ASIZP0066217	Arius maculatus	Arius maculatus	266.95	2005/8/26	JN	
ASIZP0067361	Arius maculatus	Plicofollis nella	90.71	2006/9/23	WL	
ASIZP0067459	Arius maculatus	Arius maculatus	85.07	2006/10/13	BS	
ASIZP0067476	Arius maculatus	Arius maculatus	98.16	2006/10/13	BS	
ASIZP0069738	Netuma thalassina	Netuma bilineata	168.42	2006/9/20	Miaoli	
ASIZP0069739	Netuma thalassina	Netuma bilineata	120.99	2006/9/20	Miaoli	
ASIZP0070307	Plicofollis nella	Plicofollis nella	231.47	1998/5/12	FY	
ASIZP0074001	Arius maculatus	Arius maculatus	200.86	2006/8/5	TS	
ASIZP0074516	Ariidae	Plicofollis nella	104.64	2010/9/20	LR	
ASIZP0074603	Arius maculatus	Arius maculatus	90.67	1988/5/20	TS	
ASIZP0080015	Plicofollis	Plicofollis nella	113.16	2015/12/23	DC	
	polystaphylodon					
ASIZP0080016	Arius maculatus	Arius maculatus	160.85	2015/12/23	DC	
ASIZP0080051	Arius maculatus	Arius maculatus	213.39	2016/2/17	Taoyuan	
ASIZP0080052	Arius maculatus	Arius maculatus	218.44	2016/2/17	Taoyuan	
ASIZP0080053	Arius maculatus	Arius maculatus	234.76	2016/2/17	Taoyuan	

Appendix 2. Museum specimens of Ariidae.

Specimen	Previous name in the	This paper	SL (mm)	Sampling	Sampling
number	collection			date	site
ASIZP0080057	Plicofollis	Plicofollis nella	190.87	2016/2/22	WG
	polystaphylodon				
ASIZP0080058	Arius maculatus	Arius maculatus	179.1	2016/2/22	WG
ASIZP0080059	Arius maculatus	Arius maculatus	145.04	2016/2/22	WG
FRIP00088	Netuma thalassina	Netuma bilineata	209.71	1987/7/11	Keelung
FRIP02010	no data	Arius maculatus	295.11	2008/1/9	Taoyuan
NCHU16446-1	Arius maculatus	Arius maculatus	170.03	no data	Puzih River
NCHU16446-2	Arius maculatus	Arius maculatus	199.09	no data	Puzih River
NCHU16446-3	Arius maculatus	Arius maculatus	222.71	no data	Puzih River
NCHU16455	Arius maculatus	Arius maculatus	149.9	no data	Puzih River
NCHU16750-1	Arius maculatus	Arius maculatus	156.29	no data	Puzih River
NCHU16750-2	Arius maculatus	Arius maculatus	128.82	no data	Puzih River
NCHU16750-3	Arius maculatus	Arius maculatus	143.76	no data	Puzih River
NCHU16750-4	Arius maculatus	Arius maculatus	108.12	no data	Puzih River
NCHU16750-5	Arius maculatus	Arius maculatus	95.6	no data	Puzih River
NCHU16756-1	Arius maculatus	Arius maculatus	251.5	no data	Puzih River
NCHU16756-2	Arius maculatus	Arius maculatus	176.71	no data	Puzih River
NCHU16756-3	Arius maculatus	Arius maculatus	146.89	no data	Puzih River
NCHU16756-4	Arius maculatus	Arius maculatus	127.92	no data	Puzih River
NCHU16756-5	Arius maculatus	Arius maculatus	138.74	no data	Puzih River
NCHU16756-6	Arius maculatus	Arius maculatus	132.28	no data	Puzih River
NCHU16756-7	Arius maculatus	Arius maculatus	124.28	no data	Puzih River
NCHU16756-8	Arius maculatus	Arius maculatus	120.81	no data	Puzih River
NCHU16756-9	Arius maculatus	Arius maculatus	92.15	no data	Puzih River
NCHU16768-1	Arius maculatus	Arius maculatus	153.09	no data	Puzih River
NCHU16768-2	Arius maculatus	Arius maculatus	128.62	no data	Puzih River
NCHU17703-1	Arius maculatus	Arius maculatus	235.33	no data	Puzih River
NCHU17703-2	Arius maculatus	Arius maculatus	225.77	no data	Puzih River
NCHU17703-3	Arius maculatus	Arius maculatus	166.28	no data	Puzih River
NCHU17703-4	Arius maculatus	Arius maculatus	170.22	no data	Puzih River
NCHU17703-5	Arius maculatus	Arius maculatus	164.66	no data	Puzih River
NCHU17703-6	Arius maculatus	Arius maculatus	77.71	no data	Puzih River
NCHU17703-7	Arius maculatus	Arius maculatus	71.22	no data	Puzih River

Specimen	Previous name in the	This paper	SL (mm)	Sampling	Sampling
number	collection			date	site
NCHU17703-8	Arius maculatus	Arius maculatus	72.14	no data	Puzih River
NCHU17714-1	Arius maculatus	Arius maculatus	150.39	no data	Puzih River
NCHU17714-2	Arius maculatus	Arius maculatus	79.08	no data	Puzih River
NCHU17714-3	Arius maculatus	Arius maculatus	73.39	no data	Puzih River
NCHU17714-4	Arius maculatus	Arius maculatus	72.88	no data	Puzih River
NCHU17800-1	Arius maculatus	Arius maculatus	266.28	no data	Puzih River
NCHU17800-10	Arius maculatus	Arius maculatus	149.36	no data	Puzih River
NCHU17800-11	Arius maculatus	Arius maculatus	135.46	no data	Puzih River
NCHU17800-12	Arius maculatus	Arius maculatus	103.99	no data	Puzih River
NCHU17800-13	Arius maculatus	Arius maculatus	61.04	no data	Puzih River
NCHU17800-2	Arius maculatus	Arius maculatus	226.66	no data	Puzih River
NCHU17800-3	Arius maculatus	Arius maculatus	216.53	no data	Puzih River
NCHU17800-4	Arius maculatus	Arius maculatus	183.62	no data	Puzih River
NCHU17800-5	Arius maculatus	Arius maculatus	165.93	no data	Puzih River
NCHU17800-6	Arius maculatus	Arius maculatus	172.26	no data	Puzih River
NCHU17800-7	Arius maculatus	Arius maculatus	153.32	no data	Puzih River
NCHU17800-8	Arius maculatus	Arius maculatus	147.76	no data	Puzih River
NCHU17800-9	Arius maculatus	Arius maculatus	164.79	no data	Puzih River
NMMBP00512	Arius maculatus	Arius maculatus	65.04	1984/6/17	XD
NMMBP02598	Arius maculatus	Arius maculatus	46.36	1960/1/1	Taichung
NMMBP02993	Arius maculatus	Arius maculatus	145.16	2002/7/16	QG
NMMBP03042	Netuma thalassina	Netuma bilineata	240.66	1984/12/17	XD
NMMBP04254	Arius maculatus	Arius maculatus	143.06	1963/04	Tainan
NMMBP04261	Arius maculatus	Arius maculatus	229.1	1960/01	Taichung
NMMBP05646A	Arius maculatus	Arius maculatus	71.15	1967/11/6	DD
NMMBP05646B	Arius maculatus	Arius maculatus	65.47	1967/11/6	DD
NMMBP05646C	Arius maculatus	Arius maculatus	75.39	1967/11/6	DD
NMMBP05646D	Arius maculatus	Arius maculatus	62.46	1967/11/6	DD
NMMBP05646E	Arius maculatus	Arius maculatus	62.13	1967/11/6	DD
NMMBP06322	Netuma thalassina	Netuma bilineata	135.47	1966/1/6	LK
NMMBP06356	Netuma thalassina	Netuma bilineata	219.89	1963/4/1	Tainan
NMMBP06357	Netuma thalassina	Netuma bilineata	251.67	1962/1/18	Taichung
NMMBP06359A	Netuma thalassina	Netuma bilineata	271.75	1960/4/3	DG

117

Specimen	Previous name in the	This paper	SL (mm)	Sampling	Sampling
number	collection			date	site
NMMBP06359B	Netuma thalassina	Netuma bilineata	143.43	1960/4/3	DG
NMMBP06772	Arius maculatus	Arius maculatus	108.42	2003/8/23	QG
NMMBP07424	Arius maculatus	Arius maculatus	91.97	2004/3/20	BD
NMMBP08441A	Arius maculatus	Arius maculatus	167.16	2005/5/6	Taichung
NMMBP08441B	Arius maculatus	Arius maculatus	142.27	2005/5/6	Taichung
NMMBP08461A	Arius maculatus	Arius maculatus	165.99	2005/5/6	Taichung
NMMBP08461B	Arius maculatus	Arius maculatus	110.52	2005/5/6	Taichung
NMMBP08461C	Arius maculatus	Arius maculatus	106.92	2005/5/6	Taichung
NMMBP14737	Arius maculatus	Arius maculatus	108.84	2002/7/16	QG
NMMBP15234	Arius maculatus	Arius maculatus	111.32	2011/9/11	DS
NMMBP16386	Arius maculatus	Arius maculatus	175.45	2010/5/20	DX
NMMBP16399	Arius maculatus	Arius maculatus	171.74	2010/5/20	DX
NMMBP22500	Arius maculatus	Arius maculatus	123.15	2004/4/19	QG
NMMBP22751A	Arius maculatus	Arius maculatus	153.67	2015/1/21	KZ
NMMBP22751B	Arius maculatus	Arius maculatus	130.94	2015/1/21	KZ
NMMBP25837	Arius maculatus	Arius maculatus	99.88	2017/4/15	DS
NMMBP26186	Arius maculatus	Arius maculatus	327.85	2016/5/16	TZ
NMMBP27257A	Arius maculatus	Arius maculatus	123.02	2014/7/17	no data
NMMBP27257B	Arius maculatus	Arius maculatus	109.35	2014/7/17	no data
NMMBP27257C	Arius maculatus	Arius maculatus	95.42	2014/7/17	no data
NMMBP27258	Arius maculatus	Arius maculatus	97.14	2014/4/1	no data
NMMBP28043	Arius maculatus	Arius maculatus	138.21	2018/1/18	KZ
NMMBP29346	Netuma thalassina	Netuma bilineata	328.04	2018/3/31	PH
NMMBP29932	Arius maculatus	Plicofollis nella	326.96	2018/7/4	DG
NMMBP31040A	Arius maculatus	Arius maculatus	82.13	2017/3/5	DS
NMMBP31040B	Arius maculatus	Arius maculatus	80.64	2017/3/5	DS
NMMBP31043	Arius maculatus	Arius maculatus	117.14	2017/3/5	DS
NMMBP35084	Netuma thalassina	Netuma bilineata	180.17	2019/11/13	Taichung
NMMSTP01533	Arius maculatus	Arius maculatus	179.17	2004/2/24	Miaoli
NMNSF00315A	Netuma thalassina	Arius maculatus	138.06	2004/1/15	ML
NMNSF00315B	Netuma thalassina	Arius maculatus	140.78	2004/1/15	ML
NMNSF00315C	Netuma thalassina	Arius maculatus	97.55	2004/1/15	ML

Specimen	Previous name in the	This paper	SL (mm)	Sampling	Sampling
number	collection			date	site
NMNSF00576A	Netuma thalassina	Netuma bilineata	139.56	2004/5/24	Taichung
					Port
NMNSF00576B	Netuma thalassina	Netuma bilineata	134.43	2004/5/24	Taichung
					Port
NMNSF00576C	Netuma thalassina	Netuma bilineata	132.09	2004/5/24	Taichung
					Port
NMNSF00858A	Netuma thalassina	Plicofollis nella	107.92	2004/8/20	Taichung
					Port
NMNSF00858B	Netuma thalassina	Plicofollis nella	110.75	2004/8/20	Taichung
					Port
NMNSF00858C	Netuma thalassina	Netuma bilineata	117.16	2004/8/20	Taichung
					Port
NMNSF00858D	Netuma thalassina	Netuma bilineata	102.04	2004/8/20	Taichung
					Port
NMNSF00858E	Netuma thalassina	Netuma bilineata	92.61	2004/8/20	Taichung
					Port
NTMP0593	Netuma thalassina	Netuma bilineata	242.26	1945/10-	Keelung
				1955/04	
NTMP0712	Arius maculatus	Arius maculatus	178.57	1945/10-	TS
				1955/04	
NTMP1492	Arius maculatus	Netuma bilineata	265.01	1945/10-	Western
				1955/04	Taiwan
NTMP1590A	Arius maculatus	Arius maculatus	80.72	1945/10-	TS
				1955/04	
NTMP1590B	Arius maculatus	Arius maculatus	73.54	1945/10-	TS
				1955/04	
NTUM00267A	Netuma thalassina	Arius maculatus	190.63	1955/07	Keelung
NTUM00267B	Netuma thalassina	Netuma bilineata	169.83	1955/07	Keelung
NTUM00267C	Netuma thalassina	Arius maculatus	77.56	1955/07	Keelung
NTUM00268	Arius maculatus	Netuma bilineata	259.33	1963/4/30	Keelung
NTUM00270A	Netuma thalassina	Arius maculatus	220.12	1955/07	Keelung
NTUM00270B	Netuma thalassina	Netuma bilineata	353.77	1955/07	Keelung
NTUM00270C	Netuma thalassina	Netuma bilineata	330.52	1955/07	Keelung

Specimen	Previous name in the	This paper	SL (mm)	Sampling	Sampling
number	collection			date	site
NTUM00270D	Netuma thalassina	Netuma bilineata	353.57	1955/07	Keelung
NTUM00270E	Netuma thalassina	Netuma bilineata	272.08	1955/07	Keelung
NTUM00270F	Netuma thalassina	Netuma bilineata	217.23	1955/07	Keelung
NTUM00270G	Netuma thalassina	Netuma bilineata	168.31	1955/07	Keelung
NTUM00270H	Netuma thalassina	Netuma bilineata	164.66	1955/07	Keelung
NTUM00270I	Netuma thalassina	Netuma bilineata	182.7	1955/07	Keelung
NTUM02172A	Arius maculatus	Arius maculatus	215.77	1963	TS
NTUM02172B	Arius maculatus	Arius maculatus	125.97	1963	TS
NTUM02172C	Arius maculatus	Arius maculatus	112.59	1963	TS
NTUM02172D	Arius maculatus	Arius maculatus	92.93	1963	TS
NTUM02172E	Arius maculatus	Arius maculatus	87.43	1963	TS
NTUM02172F	Arius maculatus	Arius maculatus	78.19	1963	TS
NTUM02172G	Arius maculatus	Arius maculatus	48.73	1963	TS
NTUM03302A	Netuma thalassina	Arius maculatus	92.29	1977/05	TS
NTUM03302B	Netuma thalassina	Arius maculatus	68.42	1977/05	TS
NTUM03302C	Netuma thalassina	Arius maculatus	73.42	1977/05	TS
NTUM03302D	Netuma thalassina	Arius maculatus	72.65	1977/05	TS
NTUM06613A	Netuma thalassina	Netuma bilineata	127.95	1977/8/25	TS
NTUM06613B	Netuma thalassina	Netuma bilineata	164.93	1977/8/25	TS
NTUM06613C	Netuma thalassina	Netuma bilineata	168.47	1977/8/25	TS
NTUM06613D	Netuma thalassina	Netuma bilineata	164.69	1977/8/25	TS
NTUM06724	Netuma thalassina	Netuma bilineata	106.39	1997/11/8	XD
NTUM06913	Arius maculatus	Plicofollis nella	115.6	1986/12/12	XD
NTUM06981A	Arius maculatus	Plicofollis nella	93.41	1997/7/15	no data
NTUM06981B	Arius maculatus	Plicofollis nella	88.07	1997/7/15	no data
NTUM06982A	Netuma thalassina	Netuma bilineata	110.13	1986/12/12	XD
NTUM06982B	Netuma thalassina	Netuma bilineata	117.79	1986/12/12	XD
NTUM08120A	Arius maculatus	Arius maculatus	128.08	1992/3/25	DD
NTUM08120B	Arius maculatus	Arius maculatus	147.66	1992/3/25	DD
NTUM08120C	Arius maculatus	Arius maculatus	143.64	1992/3/25	DD
NTUM08120D	Arius maculatus	Arius maculatus	157.88	1992/3/25	DD
NTUM08120E	Arius maculatus	Arius maculatus	139.79	1992/3/25	DD
NTUM08120F	Arius maculatus	Arius maculatus	143.47	1992/3/25	DD

Specimen	Previous name in the	This paper	SL (mm)	Sampling	Sampling
number	collection			date	site
NTUM08120G	Arius maculatus	Arius maculatus	127.13	1992/3/25	DD
NTUM08120H	Arius maculatus	Arius maculatus	136.12	1992/3/25	DD
NTUM08120I	Arius maculatus	Arius maculatus	113.44	1992/3/25	DD
NTUM08120J	Arius maculatus	Arius maculatus	89.25	1992/3/25	DD
NTUM08123A	Arius maculatus	Plicofollis nella	246.04	1992/3/25	DD
NTUM08123B	Arius maculatus	Arius maculatus	187.59	1992/3/25	DD
NTUM08123C	Arius maculatus	Arius maculatus	156.41	1992/3/25	DD
FAKU 42097	Arius maculatus	Arius maculatus	345.22	no data	Wakasa
					Bay, Japan
FAKU 101601	Arius maculatus	Arius maculatus	343.55	1971/11	Wakasa
					Bay, Japan

Appendix 3. Accession numbers and haplotypes of Ariidae. Haplotypes were named using a prefix (AH for *Arius* haplotype, NH for *Netuma* haplotype, and PH for *Plicofollis* haplotype), followed by the haplotype number, the first three letters of the species name, and the collection location or country of the specimen.

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	CHLOL2007	PQ658253	Arius maculatus	AH1_mac_Taiwan
This study	CHLOL21677	PQ658254	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL1318	PQ658255	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL1319	PQ658256	Arius maculatus	AH3_mac_Taiwan
This study	CHLOL1320	PQ658257	Arius maculatus	AH4_mac_Taiwan
This study	CHLOL1321	PQ658258	Arius maculatus	AH5_mac_Taiwan
This study	CHLOL1322	PQ658259	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL1323	PQ658260	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21679	PQ658318	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0081571	PQ658319	Arius maculatus	AH6_mac_Taiwan
This study	CHLOL21686	PQ658320	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21687	PQ658321	Arius maculatus	AH7_mac_Taiwan
This study	CHLOL21689	PQ658322	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21694	PQ658323	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21696	PQ658324	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21697	PQ658325	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21698	PQ658326	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21699	PQ658327	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21701	PQ658328	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21702	PQ658329	Arius maculatus	AH7_mac_Taiwan
This study	CHLOL21703	PQ658330	Arius maculatus	AH1_mac_Taiwan
This study	CHLOL21704	PQ658331	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21705	PQ658332	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21706	PQ658333	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21707	PQ658334	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21708	PQ658335	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	CHLOL21710	PQ658336	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21711	PQ658337	Arius maculatus	AH4_mac_Taiwan
This study	CHLOL21717	PQ658338	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21718	PQ658339	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21719	PQ658340	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21720	PQ658341	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21721	PQ658342	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21722	PQ658343	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21723	PQ658344	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21724	PQ658345	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21725	PQ658346	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21726	PQ658347	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21727	PQ658348	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21728	PQ658349	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21730	PQ658350	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21731	PQ658351	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21732	PQ658352	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21733	PQ658353	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21734	PQ658354	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	ASIZP0081572	PQ658355	Arius maculatus	AH1_mac_Taiwan
This study	CHLOL21735	PQ658261	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21736	PQ658262	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21737	PQ658263	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21738	PQ658264	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21739	PQ658265	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21740	PQ658266	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China
This study	CHLOL21741	PQ658267	Arius maculatus	AH2_mac_Taiwan_ari_China_dis China

123

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	CHLOL21742	PQ658268	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21743	PQ658269	Arius maculatus	AH4_mac_Taiwan
This study	ASIZP0081573	PQ658270	Arius maculatus	AH7_mac_Taiwan
This study	CHLOL21744	PQ658271	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21745	PQ658272	Arius maculatus	AH7_mac_Taiwan
This study	CHLOL21746	PQ658273	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21747	PQ658274	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21748	PQ658275	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21749	PQ658276	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21750	PQ658277	Arius maculatus	AH8_mac_Taiwan
This study	CHLOL21751	PQ658278	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21752	PQ658279	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21753	PQ658280	Arius maculatus	AH4_mac_Taiwan
This study	CHLOL21755	PQ658281	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21756	PQ658282	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21757	PQ658283	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21758	PQ658284	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21760	PQ658285	Arius maculatus	AH9_mac_Taiwan
This study	CHLOL21761	PQ658286	Arius maculatus	AH4_mac_Taiwan
This study	CHLOL21762	PQ658287	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21764	PQ658288	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21765	PQ658289	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21766	PQ658290	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21767	PQ658291	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21768	PQ658292	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21769	PQ658293	Arius maculatus	AH4_mac_Taiwan
This study	CHLOL21770	PQ658294	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21771	PQ658295	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21772	PQ658296	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	NTMP1732	PQ658297	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NTMP1733	PQ658298	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NMMBP37239	PQ658299	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NTMP1734	PQ658300	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NMMBP37231	PQ658301	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0081575	PQ658302	Arius maculatus	AH10_mac_Taiwan
This study	NMMBP37232	PQ658303	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NMMBP37233	PQ658304	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NTMP1737	PQ658305	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21778	PQ658306	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21779	PQ658307	Arius maculatus	AH3_mac_Taiwan
This study	NMMBP37234	PQ658308	Arius maculatus	AH1_mac_Taiwan
This study	NMMBP37235	PQ658309	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NMMBP37236	PQ658310	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NMMBP37244	PQ658311	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	NMMBP37243	PQ658312	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0081576	PQ658313	Arius maculatus	AH11_mac_Taiwan
This study	ASIZP0081580	PQ658314	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0081581	PQ658315	Arius maculatus	AH4_mac_Taiwan
This study	NTMP1738	PQ658316	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0081582	PQ658317	Arius maculatus	AH12_mac_Taiwan
This study	CHLOL21790	PQ658246	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21791	PQ658245	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0081589	PQ658244	Arius maculatus	AH71_mac_Taiwan
This study	CHLOL21792	PQ658243	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21818	PQ658242	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL21819	PQ658241	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	CHLOL32143	PQ658239	Arius sp.	AH69_mac_Brunei_Thailand
This study	CHLOL32144	PQ658238	Arius sp.	AH69_mac_Brunei_Thailand

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	CHLOL20834	PQ658236	Arius sp.	AH69_mac_Brunei_Thailand
This study	CHLOL20835	PQ658235	Arius sp.	AH69_mac_Brunei_Thailand
This study	CHLOL32145	PQ658237	Arius sp.	AH70_mac_Brunei
This study	CHLOL1324	PQ656233	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL1325	PQ656232	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	ASIZP0081570	PQ656234	Netuma bilineata	NH5_bil_Taiwan
This study	CHLOL1327	PQ656231	Netuma bilineata	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
This study	CHLOL1328	PQ656230	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL1388	PQ656229	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL1389	PQ656228	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL2008	PQ656227	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	CHLOL21681	PQ656226	Netuma bilineata	NH6_bil_Taiwan
This study	CHLOL21682	PQ656178	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	CHLOL21683	PQ656177	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	CHLOL21684	PQ656176	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	CHLOL21709	PQ656175	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	CHLOL21754	PQ656225	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	CHLOL21780	PQ656224	Netuma bilineata	NH6_bil_Taiwan
This study	CHLOL21781	PQ656223	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	ASIZP0081577	PQ656222	Netuma bilineata	NH2_bil_India_Malaysia_Taiwan_tha Malaysia
This study	ASIZP0081578	PQ656221	Netuma bilineata	NH3_bil_Taiwan_India_tha_Malaysia
This study	ASIZP0081579	PQ656220	Netuma bilineata	NH7_bil_Taiwan_Malaysia_tha_ Malaysia
This study	CHLOL21782	PQ656219	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL21783	PQ656218	Netuma bilineata	NH6_bil_Taiwan
This study	CHLOL21784	PQ656217	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL21785	PQ656216	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL21786	PQ656215	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NMMBP37276	PQ656214	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NMMBP37278	PQ656213	Netuma bilineata	NH6 bil Taiwan

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	NMMBP37275	PQ656212	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	ASIZP0081583	PQ656211	Netuma bilineata	NH6_bil_Taiwan
This study	ASIZP0081584	PQ656210	Netuma bilineata	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
This study	ASIZP0081585	PQ656209	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	ASIZP0081586	PQ656208	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL21787	PQ656207	Netuma bilineata	NH3_bil_Taiwan_India_tha_Malaysia
This study	CHLOL21788	PQ656206	Netuma bilineata	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
This study	CHLOL21789	PQ656205	Netuma bilineata	NH6_bil_Taiwan
This study	ASIZP0081587	PQ656204	Netuma bilineata	NH8_bil_Taiwan
This study	ASIZP0081588	PQ656203	Netuma bilineata	NH9_bil_Taiwan
This study	NTMP1757	PQ656202	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NTMP1758	PQ656201	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NTMP1759	PQ656200	Netuma bilineata	NH6_bil_Taiwan
This study	NTMP1760	PQ656199	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	NTMP1761	PQ656198	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NTMP1762	PQ656197	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NTMP1763	PQ656196	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NTMP1764	PQ656195	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NTMP1765	PQ656194	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NTMP1766	PQ656193	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NMMBP37257	PQ656192	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	NMMBP37262	PQ656191	Netuma bilineata	NH6_bil_Taiwan
This study	NMMBP37261	PQ656190	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	NMMBP37256	PQ656189	Netuma bilineata	NH6_bil_Taiwan
This study	NMMBP37260	PQ656188	Netuma bilineata	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
This study	NMMBP37255	PQ656187	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	ASIZP0081592	PQ656186	Netuma bilineata	NH10_bil_Taiwan
This study	NMMBP37250	PQ656185	Netuma bilineata	NH4_bil_Taiwan tha_China Indonesia Malaysia Taiwan
This study	NMMBP37258	PQ656184	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	NMMBP37259	PQ656183	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	NMMBP37269	PQ656182	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	NMMBP37251	PQ656181	Netuma bilineata	NH6_bil_Taiwan
This study	CHLOL21794	PQ656180	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	ASIZP0081593	PQ656179	Netuma bilineata	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	CHLOL1316	PQ656297	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL1383	PQ656296	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL1384	PQ656295	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL1390	PQ656290	Plicofollis nella	PH2_nel_Taiwan
This study	CHLOL1385	PQ656293	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL1386	PQ656292	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21678	PQ656289	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL1387	PQ656291	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL5782	PQ656271	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL5783	PQ656270	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL5866	PQ656262	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21680	PQ656288	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21685	PQ656287	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21688	PQ656286	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	CHLOL21690	PQ656285	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21691	PQ656284	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	CHLOL21693	PQ656283	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	CHLOL21712	PQ656282	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21713	PQ656281	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21714	PQ656280	Plicofollis nella	PH3_nel_Taiwan
This study	CHLOL21715	PQ656279	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21716	PQ656278	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia

Taxonomic Review of the Sea Catfish Family Ariidae in Taiwan

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	CHLOL5784	PQ656269	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL5785	PQ656268	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL5860	PQ656267	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL5862	PQ656266	Plicofollis nella	PH4_nel_Taiwan
This study	CHLOL5863	PQ656265	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	CHLOL5864	PQ656264	Plicofollis nella	PH4_nel_Taiwan
This study	CHLOL5865	PQ656263	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21759	PQ656277	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37301	PQ656243	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37303	PQ656241	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37302	PQ656242	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37300	PQ656244	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21773	PQ656276	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	CHLOL21774	PQ656275	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	CHLOL21775	PQ656274	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21776	PQ656273	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	ASIZP0081574	PQ656300	Plicofollis nella	PH4_nel_Taiwan
This study	NMMBP37285	PQ656258	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NTMP1772	PQ656237	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37289	PQ656254	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37290	PQ656253	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37288	PQ656255	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37287	PQ656256	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37286	PQ656257	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37306	PQ656238	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37305	PQ656239	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37304	PQ656240	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia

129

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
This study	NMMBP37279	PQ656261	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37294	PQ656250	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	ASIZP0081590	PQ656299	Plicofollis nella	PH5_nel_Taiwan
This study	NMMBP37292	PQ656251	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37291	PQ656252	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37299	PQ656245	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37298	PQ656246	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37297	PQ656247	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37296	PQ656248	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37295	PQ656249	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	NMMBP37280	PQ656260	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	NMMBP37282	PQ656259	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	CHLOL21793	PQ656272	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	ASIZP0081591	PQ656298	Plicofollis nella	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	ASIZP0917393 (tissue of ASIZP0807393)	PQ658248	Arius maculatus	AH1_mac_Taiwan
This study	ASIZP0917392 (tissue of ASIZP0807392)	PQ658247	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0917330 (tissue of ASIZP0080016)	PQ658252	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0912864 (tissue of ASIZP0067476)	PQ658249	Arius maculatus	AH2_mac_Taiwan_ari_China_dis_ China
This study	ASIZP0917387 (tissue of ASIZP0080053)	PQ658251	Arius maculatus	AH8_mac_Taiwan
This study	ASIZP0911618 (tissue of ASIZP0066217)	PQ658250	Arius maculatus	AH13_mac_Taiwan
This study	ASIZP0917076 (tissue of ASIZP0807076)	PQ658240	Arius maculatus	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
This study	ASIZP0913238 (tissue of ASIZP0803238)	PQ656174	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
This study	ASIZP0913239 (tissue of ASIZP0803239)	PQ656173	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
This study	ASIZP0900157 (tissue of ASIZP0061713)	PQ656235	Arius leiotetocephalus	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	ASIZP0917329 (tissue of ASIZP0807329)	PQ656294	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
This study	ASIZP0917391 (tissue of ASIZP0807391)	PQ656236	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	GX41	OP247600	Arius arius	AH2_mac_Taiwan_ari_China_dis_ China
NCBI GenBank	_	NC048969	Arius dispar	AH2_mac_Taiwan_ari_China_dis_ China
NCBI GenBank	_	MH460877	Arius dispar	AH2_mac_Taiwan_ari_China_dis_ China
NCBI GenBank	AdisB651	HQ682605	Arius dispar	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AdisB5	HQ682609	Arius dispar	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	TRAd2	KJ533146	Arius dispar	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	TCAd2	KJ533144	Arius dispar	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	TRAm1	KJ533142	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB10	HQ682626	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB19	HQ682625	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB12	HQ682623	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB23	HQ682622	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AmanC1	HQ682618	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB25	HQ682614	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	DB 9.2	KJ013033	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	TCAm2	KF604642	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	TCAm5	KF604638	Arius manillensis	AH14_dis_Philippines_man_ Philippines
NCBI GenBank	AdisB16	HQ682606	Arius dispar	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	AdisB11	HQ682608	Arius dispar	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	AdisB666	HQ682611	Arius dispar	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	AdisB8	HQ682612	Arius dispar	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	TCAd1	KJ533143	Arius dispar	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	BRAm2	KJ533141	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	CAs4	KJ533139	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB7	HQ682624	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB4	HQ682620	Arius manillensis	AH15_dis_Philippines_man_ Philippines

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	AmanB17	HQ682619	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB13	HQ682615	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	DB 9.1	KJ013032	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	DB 9.3	KJ013031	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	TCAm4	KF604644	Arius manillensis	AH15_dis_Philippines_man_ Philippines
NCBI GenBank	AdisB15	HQ682607	Arius dispar	AH16_dis_Philippines_man_ Philippines
NCBI GenBank	TRAd1	KJ533145	Arius dispar	AH16_dis_Philippines_man_ Philippines
NCBI GenBank	AmanB650	HQ682613	Arius manillensis	AH16_dis_Philippines_man_ Philippines
NCBI GenBank	CAs2	KF604640	Arius manillensis	AH16_dis_Philippines_man_ Philippines
NCBI GenBank	APAm1	KF604639	Arius manillensis	AH16_dis_Philippines_man_ Philippines
NCBI GenBank	AdisB668	HQ682610	Arius dispar	AH17_dis_Philippines
NCBI GenBank	ZSICF74	ON166040	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	ZSICF39	ON166005	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	WL-M667	EU148552	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	WL-M666	EU148551	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	WL-M665	EU148550	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	WL-M664	EU148549	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	WL-M663	EU148548	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	CASMBAUTRL100	KC896395	Arius arius	AH18_ari_India_gag_India
NCBI GenBank	RSYN01	JX260835	Arius gagora	AH18_ari_India_gag_India
NCBI GenBank	IFW06	MW322097	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	W20	MK041063	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF1432	KU692300	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF3555	KU692299	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF0949	KU692298	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF1427	KU692297	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF0944	KU692296	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF1429	KU692295	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF1430	KU692294	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF1428	KU692291	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF0945	KU692290	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF0947	KU692288	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	BIF3554	KU692285	Arius subrostratus	AH19_sub_Indonesia

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	BIF3552	KU692284	Arius subrostratus	AH19_sub_Indonesia
NCBI GenBank	E01	MN259176	Arius arius	AH20_ari_Bangladesh
NCBI GenBank	FBRC_ZSI_F3057A_ DNA424	MK962526	Arius arius	AH21_ari_India
NCBI GenBank	CASMBAUTRL170	KF824822	Arius arius	AH21_ari_India
NCBI GenBank	CASMBAUTRL169	KF824821	Arius arius	AH21_ari_India
NCBI GenBank	CASMBAUTRL168	KF824820	Arius arius	AH21_ari_India
NCBI GenBank	FBRC_ZSI_F3057_ DNA389	MK902712	Arius arius	AH21_ari_India
NCBI GenBank	CASMBAUTRL86	KC595986	Arius arius	AH21_ari_India
NCBI GenBank	CASMBAUTRL82	KC595984	Arius arius	AH21_ari_India
NCBI GenBank	ASCHN1	KR011049	Arius subrostratus	AH22_sub_India
NCBI GenBank	NBFGR:CHN:58A1	MK348196	Arius subrostratus	AH22_sub_India
NCBI GenBank	NBFGR:CHN:57A1	MK348195	Arius subrostratus	AH22_sub_India
NCBI GenBank	NBFGR:CHN:19V3	MG923345	Arius subrostratus	AH22_sub_India
NCBI GenBank	NBFGR:CHN:19V1	MG923343	Arius subrostratus	AH22_sub_India
NCBI GenBank	NBFGR-CHN As1	FJ869858	Arius subrostratus	AH22_sub_India
NCBI GenBank	CASMBAUTRL181	KF824833	Arius subrostratus	AH22_sub_India
NCBI GenBank	WL-M687	EU148556	Arius subrostratus	AH22_sub_India
NCBI GenBank	WL-M686	EU148555	Arius subrostratus	AH22_sub_India
NCBI GenBank	TRAd3	KJ533147	Arius dispar	AH23_dis_Philippines_man_ Philippines
NCBI GenBank	BRAm1	KJ533140	Arius manillensis	AH23_dis_Philippines_man_ Philippines
NCBI GenBank	APAm3	KJ533138	Arius manillensis	AH23_dis_Philippines_man_ Philippines
NCBI GenBank	DADB4	JX676113	Arius maculatus	AH24_mac_India
NCBI GenBank	DADB3	JX676112	Arius maculatus	AH25_mac_India
NCBI GenBank	DADB2	JX676111	Arius maculatus	AH25_mac_India
NCBI GenBank	DADB1	JX676110	Arius maculatus	AH25_mac_India
NCBI GenBank	CASMBAUTRL141	KF208419	Arius arius	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	CASMBAUTRL97	KC896392	Arius arius	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	CASMBAUTRL96	KC896391	Arius arius	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	PMNH <pak>:55242</pak>	MN511858	Arius arius	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	NF552	JX983226	Arius gagora	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	NF551	JX983225	Arius gagora	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	NF776	JX983224	Arius gagora	AH26_ari_India_Pakistan_gag_India_ mac_India

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	Fish71-IRAN	OK287057	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac India
NCBI GenBank	NBFGR:CHN:18V5	MK348149	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac India
NCBI GenBank	NBFGR:CHN:18V4	MK348148	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac India
NCBI GenBank	NBFGR:CHN:18V3	MK348147	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	NBFGR-CHN Am2	FJ869855	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	NBFGR-CHN Am1	FJ869852	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	CASMBAUTRL176	KF824828	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	CASMBAUTRL175	KF824827	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	CASMBAUTRL174	KF824826	Arius maculatus	AH26_ari_India_Pakistan_gag_India_ mac_India
NCBI GenBank	NBFGR:CHN:18V2	MK348146	Arius maculatus	AH27_mac_India_Iran
NCBI GenBank	Fish90-IRAN	OK285189	Arius maculatus	AH27_mac_India_Iran
NCBI GenBank	-	OP315319	Arius jella	AH28_jel_India
NCBI GenBank	CASMBAUTRL173	KF824825	Arius jella	AH28_jel_India
NCBI GenBank	CASMBAUTRL171	KF824823	Arius jella	AH28_jel_India
NCBI GenBank	MOF2F	KF511568	Arius arius	AH29_ari_India_sp_ari_India
NCBI GenBank	Aril	OP215800	Arius sp.	AH29_ari_India_sp_ari_India
NCBI GenBank	Wk3_30	MN243485	Arius maculatus	AH30_mac_Indonesia
NCBI GenBank	Wk2_14	MN243473	Arius maculatus	AH30_mac_Indonesia
NCBI GenBank	Wk2_01	MN243468	Arius maculatus	AH30_mac_Indonesia
NCBI GenBank	SP-76-4	MW498521	Arius gagora	AH31_gag_Malaysia_mac_Malaysia
NCBI GenBank	IPMB191216-17.03	MN094541	Arius maculatus	AH31_gag_Malaysia_mac_Malaysia
NCBI GenBank	IPMB010716-17.14	MN094540	Arius leptonotacanthus	AH32_lep_Malaysia
NCBI GenBank	IPMB181216-17.01	MN094539	Arius leptonotacanthus	AH32_lep_Malaysia
NCBI GenBank	NBFGR:CHN:58A3	MK348199	Arius maculatus	AH33_mac_India
NCBI GenBank	NBFGR:CHN:18V1	MK348145	Arius maculatus	AH33_mac_India
NCBI GenBank	NBFGR:CHN:58A2	MK348198	Arius maculatus	AH34_mac_India
NCBI GenBank	NBFGR:CHN:92A1	MK348197	Arius maculatus	AH34_mac_India
NCBI GenBank	IPMB151016-80.01	MK887137	Arius maculatus	AH35_mac_Malaysia
NCBI GenBank	IPMB170816-08.07	MK604249	Arius microcephalus	AH36_mic_Malaysia
NCBI GenBank	IPMB010716-17.19	MK604248	Arius maculatus	AH37_mac_Malaysia_mic_Malaysia
NCBI GenBank	SP-125-2	MW498526	Arius maculatus	AH37_mac_Malaysia_mic_Malaysia
NCBI GenBank	SP-125-4	MW498525	Arius maculatus	AH37_mac_Malaysia_mic_Malaysia
NCBI GenBank	SP-125-5	MW498522	Arius maculatus	AH37_mac_Malaysia_mic_Malaysia

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	NBFGR:CHN:19V2	MG923344	Arius subrostratus	AH38_sub_India
NCBI GenBank	DOZ AM01	HQ009490	Arius maculatus	AH39_mac_India
NCBI GenBank	CASMBAUTRL182	KF824834	Arius subrostratus	AH40_sub_India
NCBI GenBank	CASMBAUTRL180	KF824832	Arius subrostratus	AH41_sub_India
NCBI GenBank	CASMBAUTRL179	KF824831	Arius gagora	AH42_gag_India
NCBI GenBank	CASMBAUTRL178	KF824830	Arius gagora	AH43_gag_India
NCBI GenBank	CASMBAUTRL177	KF824829	Arius gagora	AH44_gag_India
NCBI GenBank	CASMBAUTRL172	KF824824	Arius jella	AH45_jel_India
NCBI GenBank	AmanB31	HQ682621	Arius manillensis	AH46_man_Philippines
NCBI GenBank	AmanB3	HQ682617	Arius manillensis	AH47_man_Philippines
NCBI GenBank	AmanB6	HQ682616	Arius manillensis	AH48_man_Philippines
NCBI GenBank	HMAV6	JX198217	Arius venosus	AH49_ven_Malaysia
NCBI GenBank	DUZM_MF_89	MK995087	Arius arius	AH50_ari_Bangladesh
NCBI GenBank	FBGN-SAU-Dhaka F1511sb-08	MF588531	Arius arius	AH50_ari_Bangladesh
NCBI GenBank	F1611Sb-63	MK024412	Arius arius	AH51_ari_Bangladesh
NCBI GenBank	NF774	JX983223	Arius arius	AH52_ari_India
NCBI GenBank	HHRJ01	JX260832	Arius arius	AH53_ari_India
NCBI GenBank	CASMBAUTRL99	KC896394	Arius arius	AH54_ari_India
NCBI GenBank	CASMBAUTRL98	KC896393	Arius arius	AH55_ari_India
NCBI GenBank	SP-76-3	MW498520	Arius gagora	AH56_gag_Malaysia
NCBI GenBank	SP-76-2	MW498519	Arius gagora	AH56_gag_Malaysia
NCBI GenBank	RSYN03	JX260834	Arius gagora	AH57_gag_India
NCBI GenBank	CIFEFGB-AJ-012	KU894613	Arius jella	AH58_jel_India
NCBI GenBank	CIFEFGB-AJ-011	KU894612	Arius jella	AH58_jel_India
NCBI GenBank	-	JQ697693	Arius jella	AH58_jel_India
NCBI GenBank	SP-125-3	MW498524	Arius maculatus	AH59_mac_Malaysia
NCBI GenBank	SP-125-1	MW498523	Arius maculatus	AH60_mac_Malaysia
NCBI GenBank	TCAm3	KF604643	Arius manillensis	AH61_man_Philippines
NCBI GenBank	TCAm1	KF604641	Arius manillensis	AH62_man_Philippines
NCBI GenBank	CIFEFGB-AS-018	KU894617	Arius subrostratus	AH63_sub_India
NCBI GenBank	BIF0948	KU692293	Arius subrostratus	AH64_sub_Indonesia
NCBI GenBank	BIF1431	KU692292	Arius subrostratus	AH65_sub_Indonesia
NCBI GenBank	BIF3553	KU692289	Arius subrostratus	AH66_sub_Indonesia
NCBI GenBank	BIF0943	KU692287	Arius subrostratus	AH67_sub_Indonesia
NCBI GenBank	BIF0946	KU692286	Arius subrostratus	AH67_sub_Indonesia
NCBI GenBank	CIFEFGB-AV-007	KU894608	Arius venosus	AH68_ven_India
NCBI GenBank	CIFEFGB-AV-016	KU894615	Arius venosus	AH68_ven_India

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	CIFEFGB-AV-017	KU894616	Arius venosus	AH68_ven_India
NCBI GenBank	CIFEFGB-AV-019	KU894618	Arius venosus	AH68_ven_India
NCBI GenBank	FRLM:43893	LC495685	Netuma bilineata	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
NCBI GenBank	FRLM:47238	LC495688	Netuma bilineata	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
NCBI GenBank	FRLM:55230	LC495687	Netuma bilineata	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
NCBI GenBank	hap04	KC569755	Netuma thalassina	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
NCBI GenBank	HMAT1	JX198176	Netuma thalassina	NH1_bil_Taiwan_Malaysia_tha_ Malaysia
NCBI GenBank	WL-M681	EU014253	Netuma bilineata	NH2_bil_Taiwan_India_Malaysia_tha Malaysia
NCBI GenBank	WL-M679	EU014251	Netuma thalassina	NH2_bil_Taiwan_India_Malaysia_tha Malaysia
NCBI GenBank	FRLM:47193	LC495690	Netuma bilineata	NH2_bil_Taiwan_India_Malaysia_tha Malaysia
NCBI GenBank	hap16	KC569767	Netuma thalassina	NH2_bil_Taiwan_India_Malaysia_tha Malaysia
NCBI GenBank	WL-M680	EU014252	Netuma thalassina	NH3_bil_Taiwan_India_tha_Malaysia
NCBI GenBank	hap05	KC569756	Netuma thalassina	NH3_bil_Taiwan_India_tha_Malaysia
NCBI GenBank	HMAT5	JX198179	Netuma thalassina	NH3_bil_Taiwan_India_tha_Malaysia
NCBI GenBank	HMAT3	JX198178	Netuma thalassina	NH3_bil_Taiwan_India_tha_Malaysia
NCBI GenBank	HMAT2	JX198177	Netuma thalassina	NH3_bil_Taiwan_India_tha_Malaysia
NCBI GenBank	ZS27TYC-L7	OL512931	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
NCBI GenBank	BW-A7341	GU674136	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
NCBI GenBank	BW-A7340	GU674135	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
NCBI GenBank	BW-A7360	GU674119	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
NCBI GenBank	BW-A7359	GU674118	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
NCBI GenBank	BW-A7362	GU674117	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
NCBI GenBank	BW-A7361	GU674116	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
NCBI GenBank	BW-A6688	GU673623	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia Malaysia Taiwan
NCBI GenBank	ma32	MH085824	Netuma thalassina	NH4_bil_Taiwan_tha_China_ Indonesia_Malaysia_Taiwan
NCBI GenBank	hap20	KC569771	Netuma thalassina	NH4_bil_Taiwan_tha_China Indonesia_Malaysia_Taiwan
NCBI GenBank	ASIZP0803238	KU943008	Netuma thalassina	NH4_bil_Taiwan_tha_China Indonesia_Malaysia_Taiwan
NCBI GenBank	ASIZP0803239	KU943009	Netuma thalassina	NH4_bil_Taiwan_tha_China Indonesia_Malaysia_Taiwan

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	200916-04.02	MK604251	Netuma bilineata	NH7_bil_Taiwan_Malaysia_tha_ Malaysia
NCBI GenBank	hap17	KC569768	Netuma thalassina	NH7_bil_Taiwan_Malaysia_tha_ Malaysia
NCBI GenBank	AMS:I:33460-091	LC495683	Pararius proximus	NH11_pro_Australia
NCBI GenBank	KAUM:I:98403	LC495684	Netuma patriciae	NH12_pat_Philippines
NCBI GenBank	FRLM:43894	LC495689	Netuma bilineata	NH13_bil_Malaysia_tha_Malaysia_ United Arab Emirates
NCBI GenBank	hap06	KC569757	Netuma thalassina	NH13_bil_Malaysia_tha_Malaysia_ United Arab Emirates
NCBI GenBank	EADF_513	MT076491	Netuma thalassina	NH13_bil_Malaysia_tha_Malaysia_ United Arab Emirates
NCBI GenBank	FRLM:43999	LC495697	Netuma bilineata	NH14_bil_Malaysia
NCBI GenBank	FRLM:55231	LC495696	Netuma bilineata	NH15_bil_Malaysia_tha_Malaysia
NCBI GenBank	260816-08.11	MK604252	Netuma bilineata	NH15_bil_Malaysia_tha_Malaysia
NCBI GenBank	hap35	KC569786	Netuma thalassina	NH15_bil_Malaysia_tha_Malaysia
NCBI GenBank	hap18	KC569769	Netuma thalassina	NH15_bil_Malaysia_tha_Malaysia
NCBI GenBank	WL-M682	EU014254	Netuma thalassina	NH16_bil_India
NCBI GenBank	WL-M683	EU014255	Netuma thalassina	NH17_bil_India_tha_Malaysia
NCBI GenBank	hap10	KC569761	Netuma thalassina	NH17_bil_India_tha_Malaysia
NCBI GenBank	FRLM:55228	LC495693	Netuma thalassina	NH18_tha_Malaysia
NCBI GenBank	FRLM:55227	LC495694	Netuma thalassina	NH18_tha_Malaysia
NCBI GenBank	FRLM:55229	LC495695	Netuma thalassina	NH18_tha_Malaysia
NCBI GenBank	hap30	KC569781	Netuma thalassina	NH18_tha_Malaysia
NCBI GenBank	FRLM:55232	LC495692	Netuma thalassina	NH19_tha_Malaysia
NCBI GenBank	CL048	MG574530	Netuma thalassina	NH20_tha_China
NCBI GenBank	ND031	MG574529	Netuma thalassina	NH20_tha_China
NCBI GenBank	DS029	MG574528	Netuma thalassina	NH20_tha_China
NCBI GenBank	TWS 027	MG220574	Netuma thalassina	NH20_tha_China
NCBI GenBank	-	MG587041	Netuma thalassina	NH20_tha_China
NCBI GenBank	FSCS202-06	EF607328	Netuma thalassina	NH20_tha_China
NCBI GenBank	FSCS205-06	EF607326	Netuma thalassina	NH20_tha_China
NCBI GenBank	FSCS206-06	EF607325	Netuma thalassina	NH20_tha_China
NCBI GenBank	XM035	KX254512	Netuma thalassina	NH20_tha_China
NCBI GenBank	XM034	KX254511	Netuma thalassina	NH20_tha_China
NCBI GenBank	XM033	KX254510	Netuma thalassina	NH20_tha_China
NCBI GenBank	JLJ 018	KP260470	Netuma thalassina	NH20_tha_China
NCBI GenBank	MBCSC:Fish: ZP1141251	JN242656	Netuma thalassina	 NH20_tha_China
NCBI GenBank	MBCSC:Fish: LCG116208	JN242655	Netuma thalassina	NH20_tha_China

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	MBCSC:Fish: ZP1141238	JN242654	Netuma thalassina	NH20_tha_China
NCBI GenBank	MBCSC:Fish: LCG116472	JN242653	Netuma thalassina	NH20_tha_China
NCBI GenBank	MBCSC:Fish: TCL116483	JN242652	Netuma thalassina	NH20_tha_China
NCBI GenBank	hap36	KC569787	Netuma thalassina	NH21_tha_Malaysia
NCBI GenBank	hap33	KC569784	Netuma thalassina	NH22_tha_Malaysia
NCBI GenBank	SDAT4	JX198174	Netuma thalassina	NH22_tha_Malaysia
NCBI GenBank	hap34	KC569785	Netuma thalassina	NH23_tha_Malaysia
NCBI GenBank	SDAT5	JX198175	Netuma thalassina	NH23_tha_Malaysia
NCBI GenBank	hap32	KC569783	Netuma thalassina	NH24_tha_Malaysia
NCBI GenBank	SDAT3	JX198173	Netuma thalassina	NH24_tha_Malaysia
NCBI GenBank	hap31	KC569782	Netuma thalassina	NH25_tha_Malaysia
NCBI GenBank	SDAT1	JX198171	Netuma thalassina	NH25_tha_Malaysia
NCBI GenBank	hap29	KC569780	Netuma thalassina	NH26_tha_Malaysia
NCBI GenBank	hap28	KC569779	Netuma thalassina	NH27_tha_Malaysia
NCBI GenBank	hap27	KC569778	Netuma thalassina	NH28_tha_Malaysia
NCBI GenBank	hap26	KC569777	Netuma thalassina	NH29_tha_Malaysia
NCBI GenBank	hap25	KC569776	Netuma thalassina	NH30_tha_Malaysia
NCBI GenBank	hap24	KC569775	Netuma thalassina	NH31_tha_Malaysia
NCBI GenBank	hap23	KC569774	Netuma thalassina	NH32_tha_Malaysia
NCBI GenBank	hap22	KC569773	Netuma thalassina	NH33_tha_Malaysia
NCBI GenBank	hap21	KC569772	Netuma thalassina	NH34_tha_Malaysia
NCBI GenBank	hap19	KC569770	Netuma thalassina	NH35_tha_Malaysia
NCBI GenBank	hap15	KC569766	Netuma thalassina	NH36_tha_Malaysia
NCBI GenBank	hap14	KC569765	Netuma thalassina	NH37_tha_Malaysia
NCBI GenBank	hap13	KC569764	Netuma thalassina	NH38_tha_Malaysia
NCBI GenBank	hap12	KC569763	Netuma thalassina	NH39_tha_Malaysia
NCBI GenBank	hap11	KC569762	Netuma thalassina	NH40_tha_Malaysia
NCBI GenBank	hap09	KC569760	Netuma thalassina	NH41_tha_Malaysia
NCBI GenBank	hap08	KC569759	Netuma thalassina	NH42_tha_Malaysia
NCBI GenBank	hap07	KC569758	Netuma thalassina	NH43_tha_Malaysia
NCBI GenBank	hap03	KC569754	Netuma thalassina	NH44_tha_Malaysia
NCBI GenBank	hap02	KC569753	Netuma thalassina	NH45_tha_Malaysia
NCBI GenBank	hap01	KC569752	Netuma thalassina	NH46_tha_Malaysia
NCBI GenBank	PMNH <pak>:54643</pak>	MN511996	Netuma thalassina	NH47_tha_Pakistan
NCBI GenBank	-	MW373533	Netuma thalassina	NH48_tha_China
NCBI GenBank	F1708SM-22	MT375177	Netuma thalassina	NH49_tha_Bangladesh
NCBI GenBank	EADF_480	MT076490	Netuma thalassina	NH50 tha United Arab Emirate

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	EADF_385	MT076488	Netuma thalassina	NH50_tha_United Arab Emirates
NCBI GenBank	-	KU170635	Netuma thalassina	NH51_tha_Saudi Arabia
NCBI GenBank	FBBGC030-11	JQ681502	Netuma thalassina	NH52_tha_China
NCBI GenBank	CIFEFGB-NT-001	KU894604	Netuma thalassina	NH53_tha_India
NCBI GenBank	NPPF1126	HQ149893	Netuma thalassina	NH54 tha Iran
NCBI GenBank	NPPF1128	HQ149892	Netuma thalassina	NH54 tha Iran
NCBI GenBank	PGNT1	KF447875	Netuma thalassina	NH54 tha Iran
NCBI GenBank	FSCS204-06	EF607327	Netuma thalassina	NH55_tha_China
NCBI GenBank	SDAT2	JX198172	Netuma thalassina	 NH56_tha_Malaysia
NCBI GenBank	BIOUG <can>:BW- 1816</can>	EF609288	Netuma thalassina	NH57_tha_Australia
NCBI GenBank	ASIZP0807329	KU943011	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
NCBI GenBank	SP-127-1	MW498760	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
NCBI GenBank	STAP13	JX198210	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
NCBI GenBank	STAP12	JX198209	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam dus Indonesia
NCBI GenBank	STAP11	JX198208	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam_dus_Indonesia
NCBI GenBank	STAP08	JX198207	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
NCBI GenBank	STAP15	JX198205	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
NCBI GenBank	STAP14	JX198204	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
NCBI GenBank	DOS03644	MK777719	Plicofollis polystaphylodon	PH1_nel_Taiwan_pol_Taiwan_ Malaysia Vietnam_dus_Indonesia
NCBI GenBank	BW-A9056	JN312820	Plicofollis dussumieri	PH1_nel_Taiwan_pol_Taiwan_ Malaysia_Vietnam_dus_Indonesia
NCBI GenBank	FRLM:47237	LC495686	Plicofollis argyropleuron	PH6_arg_Malaysia_lay_Malaysia_ Myanmar
NCBI GenBank	SP-78-1	MW498759	Plicofollis layardi	PH6_arg_Malaysia_lay_Malaysia_ Myanmar
NCBI GenBank	USNM:444079	MH235687	Plicofollis layardi	PH6_arg_Malaysia_lay_Malaysia_ Myanmar
NCBI GenBank	USNM:444080	MH235686	Plicofollis layardi	PH6_arg_Malaysia_lay_Malaysia_ Myanmar
NCBI GenBank	SP-79-1	MW498758	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	SP-78-2	MW498757	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	SP-76-1	MW498756	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	AKMA	KY849545	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	MAA5	JX198184	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia

Source	Specimen number	NCBI accession number	Species	Haplotype label in this paper
NCBI GenBank	MAA4	JX198183	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	MAA3	JX198182	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	MAA2	JX198181	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	MAA1	JX198180	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	gr10	MH085823	Plicofollis argyropleuron	PH7_arg_Malaysia_Indonesia
NCBI GenBank	BW-A7382	GU674102	Plicofollis argyropleuron	PH8_arg_Indonesia
NCBI GenBank	Pli5	OP215804	Plicofollis layardi	PH9_lay_India
NCBI GenBank	F1708SM-21	MT375176	Plicofollis layardi	PH10_lay_Bangladesh
NCBI GenBank	CgA4	KF604683	Plicofollis magatensis	PH11_mag_Philippines
NCBI GenBank	CgA5	KF604682	Plicofollis magatensis	PH11_mag_Philippines
NCBI GenBank	CgA6	KF604681	Plicofollis magatensis	PH11_mag_Philippines
NCBI GenBank	CgA7	KF604680	Plicofollis magatensis	PH11_mag_Philippines
NCBI GenBank	CgA1	KF604679	Plicofollis magatensis	PH11_mag_Philippines
NCBI GenBank	CgA2	KF604678	Plicofollis magatensis	PH11_mag_Philippines
NCBI GenBank	CgA3	KF604677	Plicofollis magatensis	PH12_mag_Philippines
NCBI GenBank	CASMBAUTRL188	KF824840	Plicofollis platystomus	PH13_pla_India
NCBI GenBank	CASMBAUTRL187	KF824839	Plicofollis platystomus	PH13_pla_India
NCBI GenBank	CASMBAUTRL186	KF824838	Plicofollis platystomus	PH14_pla_India
NCBI GenBank	STAP07	JX198206	Plicofollis polystaphylodon	PH15_pol_Malaysia